These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Amphiphilic gemini pyridinium-mediated incorporation of Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin into water-soluble gold nanoparticles for photodynamic therapy. Alea-Reyes ME, Soriano J, Mora-Espí I, Rodrigues M, Russell DA, Barrios L, Pérez-García L. Colloids Surf B Biointerfaces; 2017 Oct 01; 158():602-609. PubMed ID: 28755557 [Abstract] [Full Text] [Related]
3. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Obaid G, Chambrier I, Cook MJ, Russell DA. Photochem Photobiol Sci; 2015 Apr 01; 14(4):737-47. PubMed ID: 25604735 [Abstract] [Full Text] [Related]
4. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Photochem Photobiol Sci; 2011 May 01; 10(5):822-31. PubMed ID: 21455532 [Abstract] [Full Text] [Related]
5. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. Penon O, Marín MJ, Amabilino DB, Russell DA, Pérez-García L. J Colloid Interface Sci; 2016 Jan 15; 462():154-65. PubMed ID: 26454374 [Abstract] [Full Text] [Related]
6. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Ferreira DC, Monteiro CS, Chaves CR, Sáfar GAM, Moreira RL, Pinheiro MVB, Martins DCS, Ladeira LO, Krambrock K. Colloids Surf B Biointerfaces; 2017 Feb 01; 150():297-307. PubMed ID: 28029548 [Abstract] [Full Text] [Related]
8. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T. J Photochem Photobiol B; 2012 Feb 06; 107():35-44. PubMed ID: 22209036 [Abstract] [Full Text] [Related]
10. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer. Singh N, Sen Gupta R, Bose S. Nanoscale; 2024 Feb 15; 16(7):3243-3268. PubMed ID: 38265094 [Abstract] [Full Text] [Related]
11. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells. Buchner M, García Calavia P, Muhr V, Kröninger A, Baeumner AJ, Hirsch T, Russell DA, Marín MJ. Photochem Photobiol Sci; 2019 Jan 01; 18(1):98-109. PubMed ID: 30328457 [Abstract] [Full Text] [Related]
12. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. J Colloid Interface Sci; 2018 Feb 15; 512():249-259. PubMed ID: 29073466 [Abstract] [Full Text] [Related]
13. Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C. Biomacromolecules; 2016 Jun 13; 17(6):2128-36. PubMed ID: 27219282 [Abstract] [Full Text] [Related]
14. Core-shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. Ballestri M, Caruso E, Guerrini A, Ferroni C, Banfi S, Gariboldi M, Monti E, Sotgiu G, Varchi G. J Photochem Photobiol B; 2018 Sep 13; 186():169-177. PubMed ID: 30064063 [Abstract] [Full Text] [Related]
15. Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles. Matlou GG, Oluwole DO, Prinsloo E, Nyokong T. J Photochem Photobiol B; 2018 Sep 13; 186():216-224. PubMed ID: 30077918 [Abstract] [Full Text] [Related]
16. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity. Chen RJ, Chen PC, Prasannan A, Vinayagam J, Huang CC, Chou PY, Weng CC, Tsai HC, Lin SY. Mater Sci Eng C Mater Biol Appl; 2016 Jun 13; 63():678-85. PubMed ID: 27040265 [Abstract] [Full Text] [Related]
17. Synthesis, Characterization, and Biological Evaluation of a Porphyrin-Based Photosensitizer and Its Isomer for Effective Photodynamic Therapy against Breast Cancer. Feng X, Shi Y, Xie L, Zhang K, Wang X, Liu Q, Wang P. J Med Chem; 2018 Aug 23; 61(16):7189-7201. PubMed ID: 30048595 [Abstract] [Full Text] [Related]
18. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Yang Y, Hu Y, Du H, Ren L, Wang H. Int J Nanomedicine; 2018 Aug 23; 13():2065-2078. PubMed ID: 29670350 [Abstract] [Full Text] [Related]
19. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy. Costa LD, e Silva Jde A, Fonseca SM, Arranja CT, Urbano AM, Sobral AJ. Molecules; 2016 Mar 31; 21(4):439. PubMed ID: 27043519 [Abstract] [Full Text] [Related]
20. Mono- and tri-cationic porphyrin-monoclonal antibody conjugates: photodynamic activity and mechanism of action. Smith K, Malatesti N, Cauchon N, Hunting D, Lecomte R, van Lier JE, Greenman J, Boyle RW. Immunology; 2011 Feb 31; 132(2):256-65. PubMed ID: 21039468 [Abstract] [Full Text] [Related] Page: [Next] [New Search]