These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 28217825

  • 1. Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps.
    Xu X, Liu Y, Zhang X, Tian Q, Wu Y, Zhang G, Meng J, Yang Z, Lu H.
    Abdom Radiol (NY); 2017 Jul; 42(7):1896-1905. PubMed ID: 28217825
    [Abstract] [Full Text] [Related]

  • 2. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI.
    Xu X, Zhang X, Tian Q, Zhang G, Liu Y, Cui G, Meng J, Wu Y, Liu T, Yang Z, Lu H.
    Int J Comput Assist Radiol Surg; 2017 Apr; 12(4):645-656. PubMed ID: 28110476
    [Abstract] [Full Text] [Related]

  • 3. Quantitative Identification of Nonmuscle-Invasive and Muscle-Invasive Bladder Carcinomas: A Multiparametric MRI Radiomics Analysis.
    Xu X, Zhang X, Tian Q, Wang H, Cui LB, Li S, Tang X, Li B, Dolz J, Ayed IB, Liang Z, Yuan J, Du P, Lu H, Liu Y.
    J Magn Reson Imaging; 2019 May; 49(5):1489-1498. PubMed ID: 30252978
    [Abstract] [Full Text] [Related]

  • 4. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging.
    Zhang X, Xu X, Tian Q, Li B, Wu Y, Yang Z, Liang Z, Liu Y, Cui G, Lu H.
    J Magn Reson Imaging; 2017 Nov; 46(5):1281-1288. PubMed ID: 28199039
    [Abstract] [Full Text] [Related]

  • 5. Development of a noninvasive tool to preoperatively evaluate the muscular invasiveness of bladder cancer using a radiomics approach.
    Zheng J, Kong J, Wu S, Li Y, Cai J, Yu H, Xie W, Qin H, Wu Z, Huang J, Lin T.
    Cancer; 2019 Dec 15; 125(24):4388-4398. PubMed ID: 31469418
    [Abstract] [Full Text] [Related]

  • 6. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H, Mofid B, Shiri I, Razzaghdoust A, Saadipoor A, Mahdavi A, Galandooz HM, Mahdavi SR.
    Radiol Med; 2019 Jun 15; 124(6):555-567. PubMed ID: 30607868
    [Abstract] [Full Text] [Related]

  • 7. Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis.
    Liang M, Cai Z, Zhang H, Huang C, Meng Y, Zhao L, Li D, Ma X, Zhao X.
    Acad Radiol; 2019 Nov 15; 26(11):1495-1504. PubMed ID: 30711405
    [Abstract] [Full Text] [Related]

  • 8. Multi-task deep learning based on T2-Weighted Images for predicting Muscular-Invasive Bladder Cancer.
    Zou Y, Cai L, Chen C, Shao Q, Fu X, Yu J, Wang L, Chen Z, Yang X, Yuan B, Liu P, Lu Q.
    Comput Biol Med; 2022 Dec 15; 151(Pt A):106219. PubMed ID: 36343408
    [Abstract] [Full Text] [Related]

  • 9. Radiomic analysis of multiparametric magnetic resonance imaging for differentiating skull base chordoma and chondrosarcoma.
    Li L, Wang K, Ma X, Liu Z, Wang S, Du J, Tian K, Zhou X, Wei W, Sun K, Lin Y, Wu Z, Tian J.
    Eur J Radiol; 2019 Sep 15; 118():81-87. PubMed ID: 31439263
    [Abstract] [Full Text] [Related]

  • 10. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma.
    Fan Y, Liu Z, Hou B, Li L, Liu X, Liu Z, Wang R, Lin Y, Feng F, Tian J, Feng M.
    Eur J Radiol; 2019 Dec 15; 121():108647. PubMed ID: 31561943
    [Abstract] [Full Text] [Related]

  • 11. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study.
    Filograna L, Lenkowicz J, Cellini F, Dinapoli N, Manfrida S, Magarelli N, Leone A, Colosimo C, Valentini V.
    Radiol Med; 2019 Jan 15; 124(1):50-57. PubMed ID: 30191445
    [Abstract] [Full Text] [Related]

  • 12. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer.
    Meng X, Xia W, Xie P, Zhang R, Li W, Wang M, Xiong F, Liu Y, Fan X, Xie Y, Wan X, Zhu K, Shan H, Wang L, Gao X.
    Eur Radiol; 2019 Jun 15; 29(6):3200-3209. PubMed ID: 30413959
    [Abstract] [Full Text] [Related]

  • 13. MRI Radiomic Analysis of IMRT-Induced Bladder Wall Changes in Prostate Cancer Patients: A Relationship with Radiation Dose and Toxicity.
    Abdollahi H, Tanha K, Mofid B, Razzaghdoust A, Saadipoor A, Khalafi L, Bakhshandeh M, Mahdavi SR.
    J Med Imaging Radiat Sci; 2019 Jun 15; 50(2):252-260. PubMed ID: 31176433
    [Abstract] [Full Text] [Related]

  • 14. The invasion depth measurement of bladder cancer using T2-weighted magnetic resonance imaging.
    Liu Y, Zheng H, Xu X, Zhang X, Du P, Liang J, Lu H.
    Biomed Eng Online; 2020 Dec 07; 19(1):92. PubMed ID: 33287834
    [Abstract] [Full Text] [Related]

  • 15. MRI-based automated machine learning model for preoperative identification of variant histology in muscle-invasive bladder carcinoma.
    Huang J, Chen G, Liu H, Jiang W, Mai S, Zhang L, Zeng H, Wu S, Chen CY, Wu Z.
    Eur Radiol; 2024 Mar 07; 34(3):1804-1815. PubMed ID: 37658139
    [Abstract] [Full Text] [Related]

  • 16. Diagnostic performance of diffusion-weighted MR imaging at 3.0 T in predicting muscle invasion in urinary bladder cancer: utility of evaluating the morphology of the reactive tumor stalk.
    Razik A, Das CJ, Sharma S, Seth A, Srivastava DN, Mathur S, Kumar R, Gupta AK.
    Abdom Radiol (NY); 2018 Sep 07; 43(9):2431-2441. PubMed ID: 29392362
    [Abstract] [Full Text] [Related]

  • 17. Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging.
    Li Y, Liang Y, Sun Z, Xu K, Fan X, Li S, Zhang Z, Jiang T, Liu X, Wang Y.
    Neuroradiology; 2019 Nov 07; 61(11):1229-1237. PubMed ID: 31218383
    [Abstract] [Full Text] [Related]

  • 18. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features.
    Soufi M, Arimura H, Nagami N.
    Med Phys; 2018 Nov 07; 45(11):5116-5128. PubMed ID: 30230556
    [Abstract] [Full Text] [Related]

  • 19. MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma.
    Iv M, Zhou M, Shpanskaya K, Perreault S, Wang Z, Tranvinh E, Lanzman B, Vajapeyam S, Vitanza NA, Fisher PG, Cho YJ, Laughlin S, Ramaswamy V, Taylor MD, Cheshier SH, Grant GA, Young Poussaint T, Gevaert O, Yeom KW.
    AJNR Am J Neuroradiol; 2019 Jan 07; 40(1):154-161. PubMed ID: 30523141
    [Abstract] [Full Text] [Related]

  • 20. Validation of vesical imaging reporting and data system for assessing muscle invasion in bladder tumor.
    Kim SH.
    Abdom Radiol (NY); 2020 Feb 07; 45(2):491-498. PubMed ID: 31422440
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.