These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 28218405

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell.
    Sanchez-Herrera D, Pacheco-Catalan D, Valdez-Ojeda R, Canto-Canche B, Dominguez-Benetton X, Domínguez-Maldonado J, Alzate-Gaviria L.
    BMC Biotechnol; 2014 Dec 09; 14():102. PubMed ID: 25487741
    [Abstract] [Full Text] [Related]

  • 3. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C.
    Fu Q, Fukushima N, Maeda H, Sato K, Kobayashi H.
    Biosci Biotechnol Biochem; 2015 Dec 09; 79(7):1200-6. PubMed ID: 25747034
    [Abstract] [Full Text] [Related]

  • 4. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP, Ren Z, Mench MM, Regan JM.
    Biotechnol Bioeng; 2008 Sep 01; 101(1):101-8. PubMed ID: 18646217
    [Abstract] [Full Text] [Related]

  • 5. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell.
    Kang CS, Eaktasang N, Kwon DY, Kim HS.
    Bioresour Technol; 2014 Aug 01; 165():27-30. PubMed ID: 24751374
    [Abstract] [Full Text] [Related]

  • 6. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K, Okabe S.
    Appl Microbiol Biotechnol; 2009 Jul 01; 83(5):965-77. PubMed ID: 19404637
    [Abstract] [Full Text] [Related]

  • 7. Electricity generation of single-chamber microbial fuel cells at low temperatures.
    Cheng S, Xing D, Logan BE.
    Biosens Bioelectron; 2011 Jan 15; 26(5):1913-7. PubMed ID: 20627513
    [Abstract] [Full Text] [Related]

  • 8. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.
    Suzuki K, Kato Y, Yui A, Yamamoto S, Ando S, Rubaba O, Tashiro Y, Futamata H.
    J Biosci Bioeng; 2018 May 15; 125(5):565-571. PubMed ID: 29373307
    [Abstract] [Full Text] [Related]

  • 9. Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment.
    Ren Y, Chen J, Li X, Yang N, Wang X.
    Bioelectrochemistry; 2018 Apr 15; 120():145-149. PubMed ID: 29268164
    [Abstract] [Full Text] [Related]

  • 10. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1.
    Sun M, Zhang F, Tong ZH, Sheng GP, Chen YZ, Zhao Y, Chen YP, Zhou SY, Liu G, Tian YC, Yu HQ.
    Biosens Bioelectron; 2010 Oct 15; 26(2):338-43. PubMed ID: 20801013
    [Abstract] [Full Text] [Related]

  • 11. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode.
    Liao Q, Zhang J, Li J, Ye D, Zhu X, Zhang B.
    Biosens Bioelectron; 2015 Jan 15; 63():558-561. PubMed ID: 25168763
    [Abstract] [Full Text] [Related]

  • 12. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.
    Lyon DY, Buret F, Vogel TM, Monier JM.
    Bioelectrochemistry; 2010 Apr 15; 78(1):2-7. PubMed ID: 19783225
    [Abstract] [Full Text] [Related]

  • 13. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.
    Jadhav DA, Ghadge AN, Ghangrekar MM.
    Bioresour Technol; 2015 Sep 15; 191():110-6. PubMed ID: 25983229
    [Abstract] [Full Text] [Related]

  • 14. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.
    Uria N, Ferrera I, Mas J.
    BMC Microbiol; 2017 Oct 18; 17(1):208. PubMed ID: 29047333
    [Abstract] [Full Text] [Related]

  • 15. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.
    Chen CY, Chen TY, Chung YC.
    Environ Technol; 2014 Oct 18; 35(1-4):286-93. PubMed ID: 24600867
    [Abstract] [Full Text] [Related]

  • 16. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell.
    Ishii S, Shimoyama T, Hotta Y, Watanabe K.
    BMC Microbiol; 2008 Jan 10; 8():6. PubMed ID: 18186940
    [Abstract] [Full Text] [Related]

  • 17. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S, Liu W, Guo J, Sun D, Pan B, Ye Y, Ding W, Huang H, Li F.
    Biosens Bioelectron; 2014 Jun 15; 56():264-70. PubMed ID: 24514078
    [Abstract] [Full Text] [Related]

  • 18. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ, Qiao Y, Zou L, Wu XS, Liu JH.
    Bioelectrochemistry; 2017 Oct 15; 117():34-39. PubMed ID: 28575838
    [Abstract] [Full Text] [Related]

  • 19. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review.
    Choudhury P, Prasad Uday US, Bandyopadhyay TK, Ray RN, Bhunia B.
    Bioengineered; 2017 Sep 03; 8(5):471-487. PubMed ID: 28453385
    [Abstract] [Full Text] [Related]

  • 20. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms.
    Zhang J, Zhang E, Scott K, Burgess JG.
    Environ Sci Technol; 2012 Mar 06; 46(5):2984-92. PubMed ID: 22352455
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.