These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 28219252

  • 21. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies.
    Rehman K, Chohan TA, Waheed I, Gilani Z, Akash MSH.
    J Cell Biochem; 2019 Jan; 120(1):425-438. PubMed ID: 30191607
    [Abstract] [Full Text] [Related]

  • 22. Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice.
    Perez-Gutierrez RM, Damian-Guzman M.
    Biol Pharm Bull; 2012 Jan; 35(9):1516-24. PubMed ID: 22975503
    [Abstract] [Full Text] [Related]

  • 23. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S, O'Neill FH, Ashafa AOT.
    J Ethnopharmacol; 2016 May 13; 183():1-8. PubMed ID: 26902829
    [Abstract] [Full Text] [Related]

  • 24. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis.
    Moon HE, Islam N, Ahn BR, Chowdhury SS, Sohn HS, Jung HA, Choi JS.
    Biosci Biotechnol Biochem; 2011 May 13; 75(8):1472-80. PubMed ID: 21821954
    [Abstract] [Full Text] [Related]

  • 25. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.
    Gopal SS, Lakshmi MJ, Sharavana G, Sathaiah G, Sreerama YN, Baskaran V.
    Food Funct; 2017 Mar 22; 8(3):1124-1131. PubMed ID: 28170007
    [Abstract] [Full Text] [Related]

  • 26. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.
    Barik SK, Russell WR, Moar KM, Cruickshank M, Scobbie L, Duncan G, Hoggard N.
    J Nutr Biochem; 2020 Apr 22; 78():108325. PubMed ID: 31952012
    [Abstract] [Full Text] [Related]

  • 27. 2,7"-Phloroglucinol-6,6'-bieckol protects INS-1 cells against high glucose-induced apoptosis.
    Lee HA, Lee JH, Han JS.
    Biomed Pharmacother; 2018 Jul 22; 103():1473-1481. PubMed ID: 29864932
    [Abstract] [Full Text] [Related]

  • 28. Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia.
    Chen TH, Fu YS, Chen SP, Fuh YM, Chang C, Weng CF.
    Biomed Pharmacother; 2021 Feb 22; 134():111151. PubMed ID: 33370629
    [Abstract] [Full Text] [Related]

  • 29. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models.
    Kim HH, Kang YR, Lee JY, Chang HB, Lee KW, Apostolidis E, Kwon YI.
    Nutrients; 2018 Feb 28; 10(3):. PubMed ID: 29495635
    [Abstract] [Full Text] [Related]

  • 30. Inhibitory activity of minor phlorotannins from Ecklonia cava on α-glucosidase.
    Park SR, Kim JH, Jang HD, Yang SY, Kim YH.
    Food Chem; 2018 Aug 15; 257():128-134. PubMed ID: 29622188
    [Abstract] [Full Text] [Related]

  • 31. α-Glucosidase inhibitory effect of resveratrol and piceatannol.
    Zhang AJ, Rimando AM, Mizuno CS, Mathews ST.
    J Nutr Biochem; 2017 Sep 15; 47():86-93. PubMed ID: 28570943
    [Abstract] [Full Text] [Related]

  • 32. Fluorinated indeno-quinoxaline bearing thiazole moieties as hypoglycaemic agents targeting α-amylase, and α-glucosidase: synthesis, molecular docking, and ADMET studies.
    Gohar NA, Fayed EA, A Ammar Y, A Abu Ali O, Ragab A, Mahfoz AM, Abusaif MS.
    J Enzyme Inhib Med Chem; 2024 Dec 15; 39(1):2367128. PubMed ID: 38913598
    [Abstract] [Full Text] [Related]

  • 33. Suppressive Effect of the α-Amylase Inhibitor Albumin from Buckwheat (Fagopyrum esculentum Moench) on Postprandial Hyperglycaemia.
    Ninomiya K, Ina S, Hamada A, Yamaguchi Y, Akao M, Shinmachi F, Kumagai H, Kumagai H.
    Nutrients; 2018 Oct 15; 10(10):. PubMed ID: 30326572
    [Abstract] [Full Text] [Related]

  • 34. Blood glucose-lowering effect of Tectona grandis flowers in type 2 diabetic rats: a study on identification of active constituents and mechanisms for antidiabetic action.
    Ramachandran S, Rajasekaran A.
    J Diabetes; 2014 Sep 15; 6(5):427-37. PubMed ID: 24393489
    [Abstract] [Full Text] [Related]

  • 35. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ.
    Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, Weng CF.
    Biomed Pharmacother; 2021 Dec 15; 144():112333. PubMed ID: 34678724
    [Abstract] [Full Text] [Related]

  • 36. Identification and characterization of anti-diabetic principle in Senna alata (Linn.) flower using alloxan-induced diabetic male Wistar rats.
    Uwazie JN, Yakubu MT, Ashafa AOT, Ajiboye TO.
    J Ethnopharmacol; 2020 Oct 28; 261():112997. PubMed ID: 32534114
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake.
    Li K, Yao F, Du J, Deng X, Li C.
    J Agric Food Chem; 2018 Feb 21; 66(7):1629-1637. PubMed ID: 29388426
    [Abstract] [Full Text] [Related]

  • 39. Prunella vulgaris L. active components and their hypoglycemic and antinociceptive effects in alloxan-induced diabetic mice.
    Raafat K, Wurglics M, Schubert-Zsilavecz M.
    Biomed Pharmacother; 2016 Dec 21; 84():1008-1018. PubMed ID: 27768926
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.