These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 28223499

  • 1. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases.
    Unciuleac MC, Goldgur Y, Shuman S.
    Proc Natl Acad Sci U S A; 2017 Mar 07; 114(10):2592-2597. PubMed ID: 28223499
    [Abstract] [Full Text] [Related]

  • 2. Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates.
    Unciuleac MC, Goldgur Y, Shuman S.
    J Biol Chem; 2019 Mar 29; 294(13):5094-5104. PubMed ID: 30718283
    [Abstract] [Full Text] [Related]

  • 3. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase.
    Unciuleac MC, Goldgur Y, Shuman S.
    Proc Natl Acad Sci U S A; 2015 Nov 10; 112(45):13868-73. PubMed ID: 26512110
    [Abstract] [Full Text] [Related]

  • 4. DNA and RNA ligases: structural variations and shared mechanisms.
    Pascal JM.
    Curr Opin Struct Biol; 2008 Feb 10; 18(1):96-105. PubMed ID: 18262407
    [Abstract] [Full Text] [Related]

  • 5. Structure and two-metal mechanism of fungal tRNA ligase.
    Banerjee A, Ghosh S, Goldgur Y, Shuman S.
    Nucleic Acids Res; 2019 Feb 20; 47(3):1428-1439. PubMed ID: 30590734
    [Abstract] [Full Text] [Related]

  • 6. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation.
    Unciuleac MC, Goldgur Y, Shuman S.
    Nucleic Acids Res; 2020 Jun 04; 48(10):5603-5615. PubMed ID: 32315072
    [Abstract] [Full Text] [Related]

  • 7. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).
    Wang LK, Zhu H, Shuman S.
    J Biol Chem; 2009 Mar 27; 284(13):8486-94. PubMed ID: 19150981
    [Abstract] [Full Text] [Related]

  • 8. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA).
    Chauleau M, Shuman S.
    Nucleic Acids Res; 2016 Mar 18; 44(5):2298-309. PubMed ID: 26857547
    [Abstract] [Full Text] [Related]

  • 9. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.
    Nandakumar J, Nair PA, Shuman S.
    Mol Cell; 2007 Apr 27; 26(2):257-71. PubMed ID: 17466627
    [Abstract] [Full Text] [Related]

  • 10. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward.
    Nandakumar J, Shuman S, Lima CD.
    Cell; 2006 Oct 06; 127(1):71-84. PubMed ID: 17018278
    [Abstract] [Full Text] [Related]

  • 11. Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD+-dependent DNA ligase A.
    Shukla A, Afsar M, Kumar N, Kumar S, Ramachandran R.
    J Struct Biol; 2021 Mar 06; 213(1):107655. PubMed ID: 33197566
    [Abstract] [Full Text] [Related]

  • 12. RNA ligase; picking up the pieces.
    Wood ZA, Sabatini RS, Hajduk SL.
    Mol Cell; 2004 Feb 27; 13(4):455-6. PubMed ID: 14992715
    [Abstract] [Full Text] [Related]

  • 13. Structure-guided mutational analysis of T4 RNA ligase 1.
    Wang LK, Schwer B, Shuman S.
    RNA; 2006 Dec 27; 12(12):2126-34. PubMed ID: 17068206
    [Abstract] [Full Text] [Related]

  • 14. Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.
    Zhelkovsky AM, McReynolds LA.
    J Biol Chem; 2014 Nov 28; 289(48):33608-16. PubMed ID: 25324547
    [Abstract] [Full Text] [Related]

  • 15. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.
    Wang LK, Ho CK, Pei Y, Shuman S.
    J Biol Chem; 2003 Aug 08; 278(32):29454-62. PubMed ID: 12766156
    [Abstract] [Full Text] [Related]

  • 16. Molecular architecture and ligand recognition determinants for T4 RNA ligase.
    El Omari K, Ren J, Bird LE, Bona MK, Klarmann G, LeGrice SF, Stammers DK.
    J Biol Chem; 2006 Jan 20; 281(3):1573-9. PubMed ID: 16263720
    [Abstract] [Full Text] [Related]

  • 17. Characterization of a baculovirus enzyme with RNA ligase, polynucleotide 5'-kinase, and polynucleotide 3'-phosphatase activities.
    Martins A, Shuman S.
    J Biol Chem; 2004 Apr 30; 279(18):18220-31. PubMed ID: 14747466
    [Abstract] [Full Text] [Related]

  • 18. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).
    Zhu H, Shuman S.
    J Biol Chem; 2005 Apr 01; 280(13):12137-44. PubMed ID: 15671015
    [Abstract] [Full Text] [Related]

  • 19. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+.
    Sriskanda V, Shuman S.
    J Biol Chem; 2002 Mar 22; 277(12):9695-700. PubMed ID: 11781321
    [Abstract] [Full Text] [Related]

  • 20. A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli.
    Sriskanda V, Shuman S.
    Nucleic Acids Res; 2001 Dec 15; 29(24):4930-4. PubMed ID: 11812821
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.