These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


357 related items for PubMed ID: 28234642

  • 1. Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds.
    Mohamadyar-Toupkanlou F, Vasheghani-Farahani E, Hanaee-Ahvaz H, Soleimani M, Dodel M, Havasi P, Ardeshirylajimi A, Taherzadeh ES.
    ASAIO J; 2017; 63(5):684-691. PubMed ID: 28234642
    [Abstract] [Full Text] [Related]

  • 2. In Vitro and In Vivo investigations on fibronectin coated and hydroxyapatite incorporated scaffolds.
    Mohamadyar-Toupkanlou F, Vasheghani-Farahani E, Bakhshandeh B, Soleimani M, Ardeshirylajimi A.
    Cell Mol Biol (Noisy-le-grand); 2015 Aug 05; 61(4):1-7. PubMed ID: 26255261
    [Abstract] [Full Text] [Related]

  • 3. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold.
    Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N.
    In Vitro Cell Dev Biol Anim; 2016 Apr 05; 52(4):479-87. PubMed ID: 26822432
    [Abstract] [Full Text] [Related]

  • 4. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2016 Jan 05; 104(1):264-71. PubMed ID: 26362586
    [Abstract] [Full Text] [Related]

  • 5. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z, Song Y, Zhang J, Liu W, Cui J, Li H, Chen F.
    Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():341-351. PubMed ID: 28024596
    [Abstract] [Full Text] [Related]

  • 6. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration.
    Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S.
    BMC Vet Res; 2024 Sep 09; 20(1):403. PubMed ID: 39251976
    [Abstract] [Full Text] [Related]

  • 7. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H, Lim DJ, Lee SH, Park H.
    J Biomed Nanotechnol; 2016 Nov 09; 12(11):2076-82. PubMed ID: 29364624
    [Abstract] [Full Text] [Related]

  • 8. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 09; 49():776-785. PubMed ID: 25687008
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F, Zhang YC, Zhou H, Guo YC, Su XX.
    J Biomed Mater Res A; 2014 Mar 09; 102(3):760-8. PubMed ID: 23564567
    [Abstract] [Full Text] [Related]

  • 10. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J.
    Proc Inst Mech Eng H; 2017 Jun 09; 231(6):555-564. PubMed ID: 28056713
    [Abstract] [Full Text] [Related]

  • 11. Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation.
    Shekaran A, Lam A, Sim E, Jialing L, Jian L, Wen JT, Chan JK, Choolani M, Reuveny S, Birch W, Oh S.
    Cytotherapy; 2016 Oct 09; 18(10):1332-44. PubMed ID: 27503763
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q, Cosme JG, Xu T, Miszuk JM, Picciani PH, Fong H, Sun H.
    Biomaterials; 2017 Jan 09; 115():115-127. PubMed ID: 27886552
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.
    Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, McKean R, Kamarul T.
    Colloids Surf B Biointerfaces; 2016 Mar 01; 139():68-78. PubMed ID: 26700235
    [Abstract] [Full Text] [Related]

  • 18. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells.
    Wu X, Miao L, Yao Y, Wu W, Liu Y, Chen X, Sun W.
    Int J Nanomedicine; 2014 Mar 01; 9():4135-43. PubMed ID: 25206304
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis.
    Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, Dev VR, Deepika G, Choon AT, Ramakrishna S.
    J Biomater Sci Polym Ed; 2013 Mar 01; 24(2):170-84. PubMed ID: 22370175
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.