These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 28236509

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Specific maltose derivatives modulate the swarming motility of nonswarming mutant and inhibit bacterial adhesion and biofilm formation by Pseudomonas aeruginosa.
    Shetye GS, Singh N, Jia C, Nguyen CD, Wang G, Luk YY.
    Chembiochem; 2014 Jul 07; 15(10):1514-23. PubMed ID: 24944053
    [Abstract] [Full Text] [Related]

  • 3. Genome-wide analysis reveals a rhamnolipid-dependent modulation of flagellar genes in Pseudomonas aeruginosa PAO1.
    Castro MR, Dias GM, Salles TS, Cabral NM, Mariano DCO, Oliveira HL, Abdelhay ESFW, Binato R, Neves BC.
    Curr Genet; 2022 Apr 07; 68(2):289-304. PubMed ID: 35094149
    [Abstract] [Full Text] [Related]

  • 4. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V, Nielsen KF, Sternberg C, Jensen PR, Folkesson A, Jelsbak L.
    Microb Cell Fact; 2016 Oct 24; 15(1):181. PubMed ID: 27776509
    [Abstract] [Full Text] [Related]

  • 5. Chemical Signals of Synthetic Disaccharide Derivatives Dominate Rhamnolipids at Controlling Multiple Bacterial Activities.
    Singh N, Shetye GS, Zheng H, Sun J, Luk YY.
    Chembiochem; 2016 Jan 01; 17(1):102-11. PubMed ID: 26511780
    [Abstract] [Full Text] [Related]

  • 6. The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation.
    Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger KE.
    J Bacteriol; 2007 Sep 01; 189(18):6695-703. PubMed ID: 17631636
    [Abstract] [Full Text] [Related]

  • 7. Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa.
    Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, Schobert M, Jahn D, Wilhelm S, Jaeger KE.
    FEMS Microbiol Lett; 2010 Aug 01; 309(1):25-34. PubMed ID: 20546309
    [Abstract] [Full Text] [Related]

  • 8. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms.
    Boles BR, Thoendel M, Singh PK.
    Mol Microbiol; 2005 Sep 01; 57(5):1210-23. PubMed ID: 16101996
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.
    Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ.
    Appl Environ Microbiol; 2014 Nov 01; 80(21):6724-32. PubMed ID: 25172852
    [Abstract] [Full Text] [Related]

  • 12. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms.
    Lequette Y, Greenberg EP.
    J Bacteriol; 2005 Jan 01; 187(1):37-44. PubMed ID: 15601686
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation.
    Pham TH, Webb JS, Rehm BH.
    Microbiology (Reading); 2004 Oct 01; 150(Pt 10):3405-13. PubMed ID: 15470118
    [Abstract] [Full Text] [Related]

  • 15. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masák J, Jirků V, Řezanka T.
    J Biotechnol; 2015 Jan 10; 193():45-51. PubMed ID: 25433178
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1.
    Sood U, Singh DN, Hira P, Lee JK, Kalia VC, Lal R, Shakarad M.
    J Biotechnol; 2020 Jan 10; 307():98-106. PubMed ID: 31705932
    [Abstract] [Full Text] [Related]

  • 18. Semi-rational evolution of the 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA to improve rhamnolipid production in Pseudomonas aeruginosa and Burkholderia glumae.
    Dulcey CE, López de Los Santos Y, Létourneau M, Déziel E, Doucet N.
    FEBS J; 2019 Oct 10; 286(20):4036-4059. PubMed ID: 31177633
    [Abstract] [Full Text] [Related]

  • 19. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa.
    Pamp SJ, Tolker-Nielsen T.
    J Bacteriol; 2007 Mar 10; 189(6):2531-9. PubMed ID: 17220224
    [Abstract] [Full Text] [Related]

  • 20. Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility.
    Okkotsu Y, Tieku P, Fitzsimmons LF, Churchill ME, Schurr MJ.
    J Bacteriol; 2013 Dec 10; 195(24):5499-515. PubMed ID: 24097945
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.