These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


88 related items for PubMed ID: 2823825

  • 1. The four stereoisomers of a high potency congener of isoproterenol. Biological activity and the relationship between the native and the chemically inserted asymmetric carbon.
    Eimerl S, Schramm M, Lok S, Goodman M, Khan M, Melmon K.
    Biochem Pharmacol; 1987 Oct 15; 36(20):3523-7. PubMed ID: 2823825
    [Abstract] [Full Text] [Related]

  • 2. High potency congeners of isoproterenol. Binding to beta-adrenergic receptors, activation of adenylate cyclase and stimulation of intracellular cyclic AMP synthesis.
    Schramm M, Eimerl S, Goodman M, Verlander MS, Khan MM, Melmon K.
    Biochem Pharmacol; 1986 Aug 15; 35(16):2805-9. PubMed ID: 3017363
    [Abstract] [Full Text] [Related]

  • 3. Stereoselectivity of porcine beta-adrenergic receptors for ractopamine stereoisomers.
    Mills SE, Kissel J, Bidwell CA, Smith DJ.
    J Anim Sci; 2003 Jan 15; 81(1):122-9. PubMed ID: 12597381
    [Abstract] [Full Text] [Related]

  • 4. Interaction of beta-adrenergic receptors with the inhibitory guanine nucleotide-binding protein of adenylate cyclase in membranes prepared from cyc- S49 lymphoma cells.
    Abramson SN, Martin MW, Hughes AR, Harden TK, Neve KA, Barrett DA, Molinoff PB.
    Biochem Pharmacol; 1988 Nov 15; 37(22):4289-97. PubMed ID: 2848525
    [Abstract] [Full Text] [Related]

  • 5. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site.
    Aurbach GD, Fedak SA, Woodard CJ, Palmer JS, Hauser D, Troxler F.
    Science; 1974 Dec 27; 186(4170):1223-4. PubMed ID: 4154497
    [Abstract] [Full Text] [Related]

  • 6. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes.
    Vauquelin G, Geynet P, Hanoune J, Strosberg AD.
    Eur J Biochem; 1979 Aug 01; 98(2):543-56. PubMed ID: 226363
    [Abstract] [Full Text] [Related]

  • 7. Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes.
    Vauquelin G, Cech SY, André C, Strosberg AD, Maguire ME.
    J Cyclic Nucleotide Res; 1982 Aug 01; 8(3):149-62. PubMed ID: 6300206
    [Abstract] [Full Text] [Related]

  • 8. Parallel modulation of catecholamine activation of adenylate cyclase and formation of the high-affinity agonist.receptor complex in turkey erythrocyte membranes by temperature and cis-vaccenic acid.
    Briggs MM, Lefkowitz RJ.
    Biochemistry; 1980 Sep 16; 19(19):4461-6. PubMed ID: 6250586
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. In vitro characterization of skeletal muscle beta-adrenergic receptors coupled to adenylate cyclase.
    Reddy NB, Engel WK.
    Biochim Biophys Acta; 1979 Jul 04; 585(3):343-59. PubMed ID: 226166
    [Abstract] [Full Text] [Related]

  • 13. Catecholamine-induced desensitization of adenylate cyclase coupled beta-adrenergic receptors in turkey erythrocytes: evidence for a two-step mechanism.
    Stadel JM, Rebar R, Crooke ST.
    Biochemistry; 1987 Sep 08; 26(18):5861-6. PubMed ID: 2823888
    [Abstract] [Full Text] [Related]

  • 14. Beta-adrenergic activity of (+/-)-hydroxybenzylisoproterenol in isolated rat fat cells and hepatocytes.
    Malbon CC.
    Biochim Biophys Acta; 1981 Mar 05; 673(2):203-16. PubMed ID: 6260234
    [Abstract] [Full Text] [Related]

  • 15. Hormone action at the membrane level. VI. Binding of (-)-[3H]dihydroalprenolol and (+/-)-[3H]isoproterenol to turkey erythrocytes and correlation with adenylate cyclase activity.
    Malchoff CD, Marinetti GV.
    Biochim Biophys Acta; 1978 Feb 01; 538(3):541-54. PubMed ID: 203330
    [No Abstract] [Full Text] [Related]

  • 16. Differential effects of fluoride on adenylate cyclase activity and guanine nucleotide regulation of agonist high-affinity receptor binding.
    Stadel JM, Crooke ST.
    Biochem J; 1988 Aug 15; 254(1):15-20. PubMed ID: 2845943
    [Abstract] [Full Text] [Related]

  • 17. Modulation of beta-adrenergic agonist binding by guanylnucleotides in avian erythrocytes.
    Simpson IA, Pfeuffer T.
    FEBS Lett; 1980 Jun 16; 115(1):113-7. PubMed ID: 6248374
    [No Abstract] [Full Text] [Related]

  • 18. Differential effects of GTP on the coupling of beta-adrenergic receptors to adenylate cyclase from frog and turkey erythrocytes. Application of new methods for the analysis of receptor-effector coupling.
    Limbird LE, DeLean A, Hickey AR, Pike LJ, Lefkowitz RJ.
    Biochim Biophys Acta; 1979 Aug 22; 586(2):298-314. PubMed ID: 224939
    [Abstract] [Full Text] [Related]

  • 19. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes.
    Stadel JM, Rebar R, Crooke ST.
    Biochem J; 1988 Jun 15; 252(3):771-6. PubMed ID: 2844155
    [Abstract] [Full Text] [Related]

  • 20. Structure-activity relationships of beta-adrenergic receptor-coupled adenylate cyclase: implications of a redox mechanism for the action of agonists at beta-adrenergic receptors.
    Wong A, Hwang SM, Cheng HY, Crooke ST.
    Mol Pharmacol; 1987 Apr 15; 31(4):368-76. PubMed ID: 2883567
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.