These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Cu3 V2 O8 Nanoparticles as Intercalation-Type Anode Material for Lithium-Ion Batteries. Li M, Gao Y, Chen N, Meng X, Wang C, Zhang Y, Zhang D, Wei Y, Du F, Chen G. Chemistry; 2016 Aug 01; 22(32):11405-12. PubMed ID: 27356500 [Abstract] [Full Text] [Related]
7. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5. Ma W, Zhang C, Liu C, Nan X, Fu H, Cao G. ACS Appl Mater Interfaces; 2016 Aug 03; 8(30):19542-9. PubMed ID: 27400230 [Abstract] [Full Text] [Related]
8. Novel Li3 VO4 Nanostructures Grown in Highly Efficient Microwave Irradiation Strategy and Their In-Situ Lithium Storage Mechanism. Sun Y, Li C, Yang C, Dai G, Li L, Hu Z, Wang D, Liang Y, Li Y, Wang Y, Xu Y, Zhao Y, Liu H, Chou S, Zhu Z, Wang M, Zhu J. Adv Sci (Weinh); 2022 Jan 03; 9(3):e2103493. PubMed ID: 34802197 [Abstract] [Full Text] [Related]
9. Novel Co2 VO4 Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for High-Performance Li-Ion Batteries. Zhu C, Liu Z, Wang J, Pu J, Wu W, Zhou Q, Zhang H. Small; 2017 Sep 03; 13(34):. PubMed ID: 28696586 [Abstract] [Full Text] [Related]
10. The mechanism of the one-step synthesis of hollow-structured Li(3)VO(4) as an anode for lithium-ion batteries. Shi Y, Gao J, Abruña HD, Li HJ, Liu HK, Wexler D, Wang JZ, Wu Y. Chemistry; 2014 May 05; 20(19):5608-12. PubMed ID: 24687863 [Abstract] [Full Text] [Related]
12. Hollow-Cuboid Li3VO4/C as High-Performance Anodes for Lithium-Ion Batteries. Zhang C, Liu C, Nan X, Song H, Liu Y, Zhang C, Cao G. ACS Appl Mater Interfaces; 2016 Jan 13; 8(1):680-8. PubMed ID: 26653537 [Abstract] [Full Text] [Related]
13. Intercalation anode material for lithium ion battery based on molybdenum dioxide. Sen UK, Shaligram A, Mitra S. ACS Appl Mater Interfaces; 2014 Aug 27; 6(16):14311-9. PubMed ID: 25062365 [Abstract] [Full Text] [Related]
14. Boosting Zinc Storage Performance of Li3 VO4 Cathode Material for Aqueous Zinc Ion Batteries via Carbon-Incorporation: A Study Combining Theory and Experiment. Cheng H, Zhang Y, Cai X, Liu C, Wang Z, Ye H, Pan Y, Jia D, Lin H. Small; 2024 Feb 27; 20(5):e2305762. PubMed ID: 37759422 [Abstract] [Full Text] [Related]
15. Assembling All-Solid-State Lithium-Sulfur Batteries with Li3 N-Protected Anodes. Kızılaslan A, Akbulut H. Chempluschem; 2019 Feb 27; 84(2):183-189. PubMed ID: 31950696 [Abstract] [Full Text] [Related]
16. NASICON-Type Mg0.5Ti2(PO4)3 Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries. Zhao Y, Wei Z, Pang Q, Wei Y, Cai Y, Fu Q, Du F, Sarapulova A, Ehrenberg H, Liu B, Chen G. ACS Appl Mater Interfaces; 2017 Feb 08; 9(5):4709-4718. PubMed ID: 28098442 [Abstract] [Full Text] [Related]
17. Surface Modification of Li3VO4 with PEDOT:PSS Conductive Polymer as an Anode Material for Li-Ion Capacitors. Hsu SC, Wang KS, Lin YT, Huang JH, Wu NJ, Kang JL, Weng HC, Liu TY. Polymers (Basel); 2023 May 29; 15(11):. PubMed ID: 37299301 [Abstract] [Full Text] [Related]
18. Fe2 VO4 Hierarchical Porous Microparticles Prepared via a Facile Surface Solvation Treatment for High-Performance Lithium and Sodium Storage. Luo Y, Huang D, Liang C, Wang P, Han K, Wu B, Cao F, Mai L, Chen H. Small; 2019 Feb 29; 15(7):e1804706. PubMed ID: 30637951 [Abstract] [Full Text] [Related]
19. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries. Ventosa E, Tymoczko A, Xie K, Xia W, Muhler M, Schuhmann W. ChemSusChem; 2014 Sep 29; 7(9):2584-9. PubMed ID: 25044925 [Abstract] [Full Text] [Related]
20. Three-Dimensional Holey Graphene Enwrapped Li3 V2 (PO4 )3 /N-Doped Carbon Cathode for High-Rate and Long-Life Li-Ion Batteries. Li X, Du X, Xu Y, Li J, Wang Y, Meng Y, Xiao D. ChemSusChem; 2022 Nov 08; 15(21):e202201459. PubMed ID: 36103362 [Abstract] [Full Text] [Related] Page: [Next] [New Search]