These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 28247991

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Revisiting the β-Lactams for Tuberculosis Therapy with a Compound-Compound Synthetic Lethality Approach.
    Xiao S, Guo H, Weiner WS, Maddox C, Mao C, Gunosewoyo H, Pelly S, White EL, Rasmussen L, Schoenen FJ, Aubé J, Bishai WR, Lun S.
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31427291
    [Abstract] [Full Text] [Related]

  • 4. Designing of inhibitors against CTX-M-15 type β-lactamase: potential drug candidate against β-lactamases-producing multi-drug-resistant bacteria.
    Ali A, Danishuddin, Maryam L, Srivastava G, Sharma A, Khan AU.
    J Biomol Struct Dyn; 2018 May; 36(7):1806-1821. PubMed ID: 28545327
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. N-(Sulfamoylbenzoyl)-L-proline Derivatives as Potential Non-β-lactam ESBL Inhibitors: Structure-Based Lead Identification, Medicinal Chemistry and Synergistic Antibacterial Activities.
    Liu X, Dong S, Ma Y, Xu H, Zhao H, Gao Q.
    Med Chem; 2019 May; 15(2):196-206. PubMed ID: 30112996
    [Abstract] [Full Text] [Related]

  • 7. Crystal Structure of Phosphoserine BlaC from Mycobacterium tuberculosis Inactivated by Bis(Benzoyl) Phosphate.
    Moural TW, White DS, Choy CJ, Kang C, Berkman CE.
    Int J Mol Sci; 2019 Jul 02; 20(13):. PubMed ID: 31269656
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Paradoxical Hypersusceptibility of Drug-resistant Mycobacteriumtuberculosis to β-lactam Antibiotics.
    Cohen KA, El-Hay T, Wyres KL, Weissbrod O, Munsamy V, Yanover C, Aharonov R, Shaham O, Conway TC, Goldschmidt Y, Bishai WR, Pym AS.
    EBioMedicine; 2016 Jul 02; 9():170-179. PubMed ID: 27333036
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics.
    Wang F, Cassidy C, Sacchettini JC.
    Antimicrob Agents Chemother; 2006 Aug 02; 50(8):2762-71. PubMed ID: 16870770
    [Abstract] [Full Text] [Related]

  • 13. 2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability.
    Jeon AB, Obregón-Henao A, Ackart DF, Podell BK, Belardinelli JM, Jackson M, Nguyen TV, Blackledge MS, Melander RJ, Melander C, Johnson BK, Abramovitch RB, Basaraba RJ.
    PLoS One; 2017 Aug 02; 12(7):e0180925. PubMed ID: 28749949
    [Abstract] [Full Text] [Related]

  • 14. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to beta-lactam antibiotics.
    Flores AR, Parsons LM, Pavelka MS.
    J Bacteriol; 2005 Mar 02; 187(6):1892-900. PubMed ID: 15743935
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Directed evolution of Mycobacterium tuberculosis β-lactamase reveals gatekeeper residue that regulates antibiotic resistance and catalytic efficiency.
    Feiler C, Fisher AC, Boock JT, Marrichi MJ, Wright L, Schmidpeter PA, Blankenfeldt W, Pavelka M, DeLisa MP.
    PLoS One; 2013 Mar 02; 8(9):e73123. PubMed ID: 24023821
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Routes of Synthesis of Carbapenems for Optimizing Both the Inactivation of L,D-Transpeptidase LdtMt1 of Mycobacterium tuberculosis and the Stability toward Hydrolysis by β-Lactamase BlaC.
    Iannazzo L, Soroka D, Triboulet S, Fonvielle M, Compain F, Dubée V, Mainardi JL, Hugonnet JE, Braud E, Arthur M, Etheve-Quelquejeu M.
    J Med Chem; 2016 Apr 14; 59(7):3427-38. PubMed ID: 26937999
    [Abstract] [Full Text] [Related]

  • 19. Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors.
    Brindisi M, Brogi S, Giovani S, Gemma S, Lamponi S, De Luca F, Novellino E, Campiani G, Docquier JD, Butini S.
    J Enzyme Inhib Med Chem; 2016 Apr 14; 31(sup1):98-109. PubMed ID: 27121013
    [Abstract] [Full Text] [Related]

  • 20. Cyclobutanone Analogues of β-Lactam Antibiotics: β-Lactamase Inhibitors with Untapped Potential?
    Devi P, Rutledge PJ.
    Chembiochem; 2017 Feb 16; 18(4):338-351. PubMed ID: 27992105
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.