These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 28254032

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Using Bacillus thuringiensis HM-311@hydroxyapatite@biochar beads to remediate Pb and Cd contaminated farmland soil.
    Zuo W, Song B, Shi Y, Zupanic A, Guo S, Huang H, Jiang L, Yu Y.
    Chemosphere; 2022 Nov; 307(Pt 2):135797. PubMed ID: 35930931
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications.
    Trakal L, Bingöl D, Pohořelý M, Hruška M, Komárek M.
    Bioresour Technol; 2014 Nov; 171():442-51. PubMed ID: 25226061
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China.
    Dong D, Zhao X, Hua X, Liu J, Gao M.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1261-8. PubMed ID: 18650011
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Investigation of a combined continuous flow system for the removal of Pb and Cd from heavily contaminated soil.
    Delil AD, Köleli N.
    Chemosphere; 2019 Aug 15; 229():181-187. PubMed ID: 31078032
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters.
    Liu G, Talley JW, Na C, Larson SL, Wolfe LG.
    Environ Sci Technol; 2010 Feb 15; 44(4):1366-72. PubMed ID: 20095528
    [Abstract] [Full Text] [Related]

  • 35. Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound.
    Zhou C, Wang X, Song X, Wang Y, Fang D, Ge S, Zhang R.
    Chemosphere; 2020 Aug 15; 253():126661. PubMed ID: 32278913
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite.
    Corami A, Mignardi S, Ferrini V.
    J Colloid Interface Sci; 2008 Jan 15; 317(2):402-8. PubMed ID: 17949731
    [Abstract] [Full Text] [Related]

  • 39. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.
    Li L, Ma J, Xu M, Li X, Tao J, Wang G, Yu J, Guo P.
    Bull Environ Contam Toxicol; 2016 Jan 15; 96(1):107-12. PubMed ID: 26644028
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.