These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 2825455
1. Does the energy state of mitochondria influence the surface potential of the inner mitochondrial membrane? A critical appraisal. Wojtczak L, Nałecz MJ, Famulski KS, Dygas A, Szewczyk A. Acta Biochim Pol; 1987; 34(3):299-318. PubMed ID: 2825455 [Abstract] [Full Text] [Related]
2. Membrane potential and surface potential in mitochondria. Binding of a cationic spin probe. Hashimoto K, Angiolillo P, Rottenberg H. Biochim Biophys Acta; 1984 Jan 30; 764(1):55-62. PubMed ID: 6320870 [Abstract] [Full Text] [Related]
3. Internalization of the spin-labelled surface potential probe CAT12 by energized mitochondria. Wojtczak L, Szewczyk A. Biochem Biophys Res Commun; 1986 May 14; 136(3):941-6. PubMed ID: 3718504 [Abstract] [Full Text] [Related]
4. Membrane potential and surface potential in mitochondria. Fluorescence and binding of 1-anilinonaphthalene-8-sulfonate. Robertson DE, Rottenberg H. J Biol Chem; 1983 Sep 25; 258(18):11039-48. PubMed ID: 6885812 [Abstract] [Full Text] [Related]
5. Membrane permeability transition promoted by phosphate enhances 1-anilino-8-naphthalene sulfonate fluorescence in calcium-loaded liver mitochondria. Maddaiah VT, Kumbar U. J Bioenerg Biomembr; 1993 Aug 25; 25(4):419-27. PubMed ID: 7693659 [Abstract] [Full Text] [Related]
6. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Petit PX, O'Connor JE, Grunwald D, Brown SC. Eur J Biochem; 1990 Dec 12; 194(2):389-97. PubMed ID: 2269275 [Abstract] [Full Text] [Related]
7. Significance of surface potential in interaction of 8-anilino-1-naphthalenesulfonate with mitochondria: fluorescence intensity and zeta-potential. Aiuchi T, Kamo N, Kurihara K, Kobatake Y. Biochemistry; 1977 Apr 19; 16(8):1626-30. PubMed ID: 856252 [Abstract] [Full Text] [Related]
8. Hormones and liver mitochondria: effects of growth hormone and thyroxine on respiration, fluorescence of 1-anilino-8-naphthalene sulfonate and enzyme activities of complex I and II of submitochondrial particles. Maddaiah VT, Clejan S, Palekar AG, Collipp PJ. Arch Biochem Biophys; 1981 Sep 19; 210(2):666-77. PubMed ID: 6795992 [No Abstract] [Full Text] [Related]
9. Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Curti C, Mingatto FE, Polizello AC, Galastri LO, Uyemura SA, Santos AC. Mol Cell Biochem; 1999 Sep 19; 199(1-2):103-9. PubMed ID: 10544958 [Abstract] [Full Text] [Related]
10. A kinetic analysis of the changes in fluorescence on the interaction of 8-anilinonaphthalene-1-sulphonate with submitochondrial particles. Gains N, Dawson AP. Biochem J; 1976 Aug 15; 158(2):295-305. PubMed ID: 985430 [Abstract] [Full Text] [Related]
11. Triphenyltetrazolium and its derivatives are anisotropic inhibitors of energy transduction in oxidative phosphorylation in rat liver mitochondria. Higuti T, Arakaki R, Kotera Y, Takigawa M, Tani I, Shibuya M. Biochim Biophys Acta; 1983 Oct 31; 725(1):1-9. PubMed ID: 6626537 [Abstract] [Full Text] [Related]
12. Use of the fluorescent probe, 1-anilino-8-naphthalene sulfonate, to monitor the interaction of pesticide chemicals with mitochondrial membranes. Hijazi AH, Chefurka W. Comp Biochem Physiol C Comp Pharmacol; 1982 Oct 31; 73(2):369-75. PubMed ID: 6129102 [Abstract] [Full Text] [Related]
13. Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Grijalba MT, Vercesi AE, Schreier S. Biochemistry; 1999 Oct 05; 38(40):13279-87. PubMed ID: 10529202 [Abstract] [Full Text] [Related]
14. Transbilayer movement and distribution of spin-labelled phospholipids in the inner mitochondrial membrane. Gallet PF, Zachowski A, Julien R, Fellmann P, Devaux PF, Maftah A. Biochim Biophys Acta; 1999 Apr 14; 1418(1):61-70. PubMed ID: 10209211 [Abstract] [Full Text] [Related]
15. Inhibition by nilutamide of the mitochondrial respiratory chain and ATP formation. Possible contribution to the adverse effects of this antiandrogen. Berson A, Schmets L, Fisch C, Fau D, Wolf C, Fromenty B, Deschamps D, Pessayre D. J Pharmacol Exp Ther; 1994 Jul 14; 270(1):167-76. PubMed ID: 8035313 [Abstract] [Full Text] [Related]
16. Membrane potentials in mitochondrial preparations as measured by means of a cyanine dye. Laris PC, Bahr DP, Chaffee RR. Biochim Biophys Acta; 1975 Mar 20; 376(3):415-25. PubMed ID: 1125220 [Abstract] [Full Text] [Related]
17. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Emaus RK, Grunwald R, Lemasters JJ. Biochim Biophys Acta; 1986 Jul 23; 850(3):436-48. PubMed ID: 2873836 [Abstract] [Full Text] [Related]
18. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV, Scaduto RC. Arch Biochem Biophys; 1995 Feb 01; 316(2):815-20. PubMed ID: 7864638 [Abstract] [Full Text] [Related]
19. [Role of the mitochondrial inner membrane in activation of NAD-isocitrate dehydrogenase by catecholamines]. Medvedev AE, Trufanova LV, Kulinskiĭ VI. Vopr Med Khim; 1994 Feb 01; 40(4):11-4. PubMed ID: 7975369 [Abstract] [Full Text] [Related]
20. [Measurement of mitochondrial transmembrane electric potential using the fluorescent probe DSM]. Kolosova NG, Kolpakov AR. Biofizika; 1991 Feb 01; 36(5):802-4. PubMed ID: 1799596 [Abstract] [Full Text] [Related] Page: [Next] [New Search]