These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
371 related items for PubMed ID: 28256237
21. Extracellular matrix sensing via modulation of orientational order of integrins and F-actin in focal adhesions. Grudtsyna V, Packirisamy S, Bidone TC, Swaminathan V. Life Sci Alliance; 2023 Oct; 6(10):. PubMed ID: 37463754 [Abstract] [Full Text] [Related]
22. A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Owen LM, Adhikari AS, Patel M, Grimmer P, Leijnse N, Kim MC, Notbohm J, Franck C, Dunn AR. Mol Biol Cell; 2017 Jul 07; 28(14):1959-1974. PubMed ID: 28592635 [Abstract] [Full Text] [Related]
23. Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions. Swaminathan V, Kalappurakkal JM, Mehta SB, Nordenfelt P, Moore TI, Koga N, Baker DA, Oldenbourg R, Tani T, Mayor S, Springer TA, Waterman CM. Proc Natl Acad Sci U S A; 2017 Oct 03; 114(40):10648-10653. PubMed ID: 29073038 [Abstract] [Full Text] [Related]
24. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair. Valencia FR, Sandoval E, Du J, Iu E, Liu J, Plotnikov SV. Dev Cell; 2021 Dec 06; 56(23):3288-3302.e5. PubMed ID: 34822787 [Abstract] [Full Text] [Related]
25. Biomechanical regulation of focal adhesion and invadopodia formation. Revach OY, Grosheva I, Geiger B. J Cell Sci; 2020 Oct 22; 133(20):. PubMed ID: 33093229 [Abstract] [Full Text] [Related]
26. The heel and toe of the cell's foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Wolfenson H, Henis YI, Geiger B, Bershadsky AD. Cell Motil Cytoskeleton; 2009 Nov 22; 66(11):1017-29. PubMed ID: 19598236 [Abstract] [Full Text] [Related]
27. Structured illumination microscopy reveals focal adhesions are composed of linear subunits. Hu S, Tee YH, Kabla A, Zaidel-Bar R, Bershadsky A, Hersen P. Cytoskeleton (Hoboken); 2015 May 22; 72(5):235-45. PubMed ID: 26012525 [Abstract] [Full Text] [Related]
28. A Focal Adhesion Filament Cross-correlation Kit for fast, automated segmentation and correlation of focal adhesions and actin stress fibers in cells. Hauke L, Narasimhan S, Primeßnig A, Kaverina I, Rehfeldt F. PLoS One; 2021 May 22; 16(9):e0250749. PubMed ID: 34506490 [Abstract] [Full Text] [Related]
29. Fascin plays a role in stress fiber organization and focal adhesion disassembly. Elkhatib N, Neu MB, Zensen C, Schmoller KM, Louvard D, Bausch AR, Betz T, Vignjevic DM. Curr Biol; 2014 Jul 07; 24(13):1492-9. PubMed ID: 24930964 [Abstract] [Full Text] [Related]
30. Nesprin-2G knockout fibroblasts exhibit reduced migration, changes in focal adhesion composition, and reduced ability to generate traction forces. Woychek A, Jones JCR. Cytoskeleton (Hoboken); 2019 Feb 07; 76(2):200-208. PubMed ID: 30667166 [Abstract] [Full Text] [Related]
31. Force loading explains spatial sensing of ligands by cells. Oria R, Wiegand T, Escribano J, Elosegui-Artola A, Uriarte JJ, Moreno-Pulido C, Platzman I, Delcanale P, Albertazzi L, Navajas D, Trepat X, García-Aznar JM, Cavalcanti-Adam EA, Roca-Cusachs P. Nature; 2017 Dec 14; 552(7684):219-224. PubMed ID: 29211717 [Abstract] [Full Text] [Related]
32. The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces. Kollimada S, Senger F, Vignaud T, Théry M, Blanchoin L, Kurzawa L. Mol Biol Cell; 2021 Aug 19; 32(18):1737-1748. PubMed ID: 34410837 [Abstract] [Full Text] [Related]
33. Focal adhesions function as a mechanosensor. Kuo JC. Prog Mol Biol Transl Sci; 2014 Aug 19; 126():55-73. PubMed ID: 25081614 [Abstract] [Full Text] [Related]
34. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Kim DH, Khatau SB, Feng Y, Walcott S, Sun SX, Longmore GD, Wirtz D. Sci Rep; 2012 Aug 19; 2():555. PubMed ID: 22870384 [Abstract] [Full Text] [Related]
35. A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size. Cao X, Lin Y, Driscoll TP, Franco-Barraza J, Cukierman E, Mauck RL, Shenoy VB. Biophys J; 2015 Nov 03; 109(9):1807-17. PubMed ID: 26536258 [Abstract] [Full Text] [Related]
36. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Weng S, Fu J. Biomaterials; 2011 Dec 03; 32(36):9584-93. PubMed ID: 21955687 [Abstract] [Full Text] [Related]
37. Biochemistry and biomechanics of cell motility. Li S, Guan JL, Chien S. Annu Rev Biomed Eng; 2005 Dec 03; 7():105-50. PubMed ID: 16004568 [Abstract] [Full Text] [Related]
38. A computational model of the response of adherent cells to stretch and changes in substrate stiffness. Parameswaran H, Lutchen KR, Suki B. J Appl Physiol (1985); 2014 Apr 01; 116(7):825-34. PubMed ID: 24408996 [Abstract] [Full Text] [Related]
39. A helping hand: How vinculin contributes to cell-matrix and cell-cell force transfer. Dumbauld DW, García AJ. Cell Adh Migr; 2014 Apr 01; 8(6):550-7. PubMed ID: 25482640 [Abstract] [Full Text] [Related]
40. Signaling Downstream of Focal Adhesions Regulates Stiffness-Dependent Differences in the TGF-β1-Mediated Myofibroblast Differentiation of Corneal Keratocytes. Maruri DP, Iyer KS, Schmidtke DW, Petroll WM, Varner VD. Front Cell Dev Biol; 2022 Apr 01; 10():886759. PubMed ID: 35693927 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]