These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1539 related items for PubMed ID: 28258147
1. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Wang S, Dong S, Wang P, Tao Y, Wang Y. Appl Environ Microbiol; 2017 May 15; 83(10):. PubMed ID: 28258147 [Abstract] [Full Text] [Related]
2. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Wang Y, Zhang ZT, Seo SO, Choi K, Lu T, Jin YS, Blaschek HP. J Biotechnol; 2015 Apr 20; 200():1-5. PubMed ID: 25680931 [Abstract] [Full Text] [Related]
3. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Bruder MR, Pyne ME, Moo-Young M, Chung DA, Chou CP. Appl Environ Microbiol; 2016 Oct 15; 82(20):6109-6119. PubMed ID: 27496775 [Abstract] [Full Text] [Related]
7. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Zhang J, Zong W, Hong W, Zhang ZT, Wang Y. Metab Eng; 2018 May 15; 47():49-59. PubMed ID: 29530750 [Abstract] [Full Text] [Related]
8. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example. Zhang ZT, Jiménez-Bonilla P, Seo SO, Lu T, Jin YS, Blaschek HP, Wang Y. Methods Mol Biol; 2018 May 15; 1772():297-325. PubMed ID: 29754236 [Abstract] [Full Text] [Related]
10. Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii. Diallo M, Hocq R, Collas F, Chartier G, Wasels F, Wijaya HS, Werten MWT, Wolbert EJH, Kengen SWM, van der Oost J, Ferreira NL, López-Contreras AM. Methods; 2020 Feb 01; 172():51-60. PubMed ID: 31362039 [Abstract] [Full Text] [Related]
11. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in Clostridium ljungdahlii and Its Application in Carbon Flux Redirection in Synthesis Gas Fermentation. Zhao R, Liu Y, Zhang H, Chai C, Wang J, Jiang W, Gu Y. ACS Synth Biol; 2019 Oct 18; 8(10):2270-2279. PubMed ID: 31526005 [Abstract] [Full Text] [Related]
14. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP. Biotechnol Bioeng; 2016 Dec 18; 113(12):2739-2743. PubMed ID: 27240718 [Abstract] [Full Text] [Related]
16. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. Wasels F, Jean-Marie J, Collas F, López-Contreras AM, Lopes Ferreira N. J Microbiol Methods; 2017 Sep 18; 140():5-11. PubMed ID: 28610973 [Abstract] [Full Text] [Related]
17. Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a. Patinios C, de Vries ST, Diallo M, Lanza L, Verbrugge PLJVQ, López-Contreras AM, van der Oost J, Weusthuis RA, Kengen SWM. Sci Rep; 2023 Jun 22; 13(1):10153. PubMed ID: 37349508 [Abstract] [Full Text] [Related]
18. Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars. Baur ST, Markussen S, Di Bartolomeo F, Poehlein A, Baker A, Jenkinson ER, Daniel R, Wentzel A, Dürre P. Appl Environ Microbiol; 2022 Apr 12; 88(7):e0241921. PubMed ID: 35311509 [Abstract] [Full Text] [Related]
19. Genome engineering of Clostridium difficile using the CRISPR-Cas9 system. Wang S, Hong W, Dong S, Zhang ZT, Zhang J, Wang L, Wang Y. Clin Microbiol Infect; 2018 Oct 12; 24(10):1095-1099. PubMed ID: 29604353 [Abstract] [Full Text] [Related]
20. Identification and Investigation of Autolysin Genes in Clostridium saccharoperbutylacetonicum Strain N1-4 for Enhanced Biobutanol Production. Jiménez-Bonilla P, Feng J, Wang S, Zhang J, Wang Y, Blersch D, de-Bashan LE, Gaillard P, Guo L, Wang Y. Appl Environ Microbiol; 2021 Mar 11; 87(7):. PubMed ID: 33514516 [Abstract] [Full Text] [Related] Page: [Next] [New Search]