These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


693 related items for PubMed ID: 28262778

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z, Chen L, Yoon M, Kumar S.
    Nanoscale; 2016 Feb 21; 8(7):4037-46. PubMed ID: 26817419
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures.
    Wang S, Wang X, Warner JH.
    ACS Nano; 2015 May 26; 9(5):5246-54. PubMed ID: 25895108
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y, Zhu C, Ju M, Zhang J, Zeng XC.
    Phys Chem Chem Phys; 2017 Mar 01; 19(9):6554-6562. PubMed ID: 28197566
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures.
    Heilmann M, Prikhodko AS, Hanke M, Sabelfeld A, Borgardt NI, Lopes JMJ.
    ACS Appl Mater Interfaces; 2020 Feb 19; 12(7):8897-8907. PubMed ID: 31971775
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Delineating the role of ripples on the thermal expansion of 2D honeycomb materials: graphene, 2D h-BN and monolayer (ML)-MoS2.
    Anees P, Valsakumar MC, Panigrahi BK.
    Phys Chem Chem Phys; 2017 Apr 19; 19(16):10518-10526. PubMed ID: 28387418
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates.
    Feigelson BN, Bermudez VM, Hite JK, Robinson ZR, Wheeler VD, Sridhara K, Hernández SC.
    Nanoscale; 2015 Feb 28; 7(8):3694-702. PubMed ID: 25640166
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures.
    Chen SN, Liu XS, Luo RH, Xu EZ, Tian JG, Liu ZB.
    ACS Appl Mater Interfaces; 2022 May 18; 14(19):22626-22633. PubMed ID: 35522991
    [Abstract] [Full Text] [Related]

  • 16. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures.
    Kamalakar MV, Dankert A, Kelly PJ, Dash SP.
    Sci Rep; 2016 Feb 17; 6():21168. PubMed ID: 26883717
    [Abstract] [Full Text] [Related]

  • 17. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z, Hu S, Chen J, Li B.
    Nanotechnology; 2017 Jun 02; 28(22):225704. PubMed ID: 28492182
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H, Tang Y, Yang P.
    Nanoscale; 2019 Aug 01; 11(30):14155-14163. PubMed ID: 31334741
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.