These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 28268061

  • 1. Nano-magnesium aided activity enhancement and biophysical characterization of a psychrophilic α-amylase immobilized on graphene oxide nanosupport.
    Dutta N, Biswas S, Saha MK.
    J Biosci Bioeng; 2017 Jul; 124(1):15-22. PubMed ID: 28268061
    [Abstract] [Full Text] [Related]

  • 2. Biophysical characterization and activity analysis of nano-magnesium supplemented cellulase obtained from a psychrobacterium following graphene oxide immobilization.
    Dutta N, Biswas S, Saha MK.
    Enzyme Microb Technol; 2016 Dec; 95():248-258. PubMed ID: 27866623
    [Abstract] [Full Text] [Related]

  • 3. Cross-linked esterase aggregates (CLEAs) using nanoparticles as immobilization matrix.
    Doraiswamy N, Sarathi M, Pennathur G.
    Prep Biochem Biotechnol; 2019 Dec; 49(3):270-278. PubMed ID: 30794034
    [Abstract] [Full Text] [Related]

  • 4. Improving the retention and reusability of Alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites.
    Mulko L, Pereyra JY, Rivarola CR, Barbero CA, Acevedo DF.
    Int J Biol Macromol; 2019 Feb 01; 122():1253-1261. PubMed ID: 30219512
    [Abstract] [Full Text] [Related]

  • 5. Immobilization of a Mesophilic Lipase on Graphene Oxide: Stability, Activity, and Reusability Insights.
    Dutta N, Saha MK.
    Methods Enzymol; 2018 Feb 01; 609():247-272. PubMed ID: 30244793
    [Abstract] [Full Text] [Related]

  • 6. Graphene oxide immobilized enzymes show high thermal and solvent stability.
    Hermanová S, Zarevúcká M, Bouša D, Pumera M, Sofer Z.
    Nanoscale; 2015 Mar 19; 7(13):5852-8. PubMed ID: 25757536
    [Abstract] [Full Text] [Related]

  • 7. Effect of graphene oxide with different morphological characteristics on properties of immobilized enzyme in the covalent method.
    Zhang H, Hua SF, Li CQ, Zhang L, Fan YC, Duan P.
    Bioprocess Biosyst Eng; 2020 Oct 19; 43(10):1847-1858. PubMed ID: 32448987
    [Abstract] [Full Text] [Related]

  • 8. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst.
    Defaei M, Taheri-Kafrani A, Miroliaei M, Yaghmaei P.
    Int J Biol Macromol; 2018 Jul 01; 113():354-360. PubMed ID: 29486263
    [Abstract] [Full Text] [Related]

  • 9. Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: A comparative study of kinetics, stability and reusability of the immobilized enzyme.
    Das R, Talat M, Srivastava ON, Kayastha AM.
    Food Chem; 2018 Apr 15; 245():488-499. PubMed ID: 29287400
    [Abstract] [Full Text] [Related]

  • 10. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch.
    Guo H, Tang Y, Yu Y, Xue L, Qian JQ.
    Int J Biol Macromol; 2016 Jun 15; 87():537-44. PubMed ID: 26959172
    [Abstract] [Full Text] [Related]

  • 11. Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads.
    He T, Tian YL, Qi L, Zhang J, Zhang ZQ.
    Int J Biol Macromol; 2014 Apr 15; 65():492-9. PubMed ID: 24518056
    [Abstract] [Full Text] [Related]

  • 12. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability.
    Mehnati-Najafabadi V, Taheri-Kafrani A, Bordbar AK.
    Int J Biol Macromol; 2018 Feb 15; 107(Pt A):418-425. PubMed ID: 28888544
    [Abstract] [Full Text] [Related]

  • 13. Immobilization of α-amylase on GO-magnetite nanoparticles for the production of high maltose containing syrup.
    Desai RP, Dave D, Suthar SA, Shah S, Ruparelia N, Kikani BA.
    Int J Biol Macromol; 2021 Feb 01; 169():228-238. PubMed ID: 33338531
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Some properties of free and immobilized alpha-amylase from Penicillium griseofulvum by solid state fermentation.
    Ertan F, Yagar H, Balkan B.
    Prep Biochem Biotechnol; 2006 Feb 01; 36(1):81-91. PubMed ID: 16428140
    [Abstract] [Full Text] [Related]

  • 16. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme.
    Akhond M, Pashangeh K, Karbalaei-Heidari HR, Absalan G.
    Appl Biochem Biotechnol; 2016 Nov 01; 180(5):954-968. PubMed ID: 27240662
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support.
    Ahmed SA, Mostafa FA, Ouis MA.
    Int J Biol Macromol; 2018 Jun 01; 112():371-382. PubMed ID: 29408004
    [Abstract] [Full Text] [Related]

  • 20. Improved stability and catalytic activity of graphene oxide/chitosan hybrid beads loaded with porcine liver esterase.
    Sunderrajan S, Miranda LR, Pennathur G.
    Prep Biochem Biotechnol; 2018 Apr 21; 48(4):343-351. PubMed ID: 29509104
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.