These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 28269572
1. A novel tool and procedure for in-situ volumetric calibration of motion capture systems for breathing analysis. Massaroni C, Schena E, Saccomandi P, Silvestri S. Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5797-5800. PubMed ID: 28269572 [Abstract] [Full Text] [Related]
2. Optical measurement of breathing: algorithm volume calibration and preliminary validation on healthy trained subjects. Massaroni C, Cassetta E, Levai IK, Winter S, Dickinson JW, Silvestri S. Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2153-2156. PubMed ID: 28268758 [Abstract] [Full Text] [Related]
3. Evaluation of optoelectronic Plethysmography accuracy and precision in recording displacements during quiet breathing simulation. Massaroni C, Schena E, Saccomandi P, Morrone M, Sterzi S, Silvestri S. Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1291-4. PubMed ID: 26736504 [Abstract] [Full Text] [Related]
4. Accuracy evaluation of dynamic volume measurements performed by opto-electronic plethysmograph, by using a pulmonary simulator. Bastianini F, Schena E, Saccomandi P, Silvestri S. Annu Int Conf IEEE Eng Med Biol Soc; 2013 Aug; 2013():930-3. PubMed ID: 24109841 [Abstract] [Full Text] [Related]
5. Accuracy and reliability of the optoelectronic plethysmography and the heart rate systems for measuring breathing rates compared with the spirometer. Stubbe L, Houel N, Cottin F. Sci Rep; 2022 Nov 10; 12(1):19255. PubMed ID: 36357452 [Abstract] [Full Text] [Related]
6. Development of a new calibration procedure and its experimental validation applied to a human motion capture system. Royo Sánchez AC, Aguilar Martín JJ, Santolaria Mazo J. J Biomech Eng; 2014 Dec 10; 136(12):124502. PubMed ID: 25203903 [Abstract] [Full Text] [Related]
8. [Optoelectronic plethysmography: a new tool in respiratory medicine]. Aliverti A, Dellacà R, Pedotti A. Recenti Prog Med; 2001 Nov 26; 92(11):644-7. PubMed ID: 11765654 [Abstract] [Full Text] [Related]
9. Measurement of total and compartmental lung volume changes in newborns by optoelectronic plethysmography. Dellaca' RL, Ventura ML, Zannin E, Natile M, Pedotti A, Tagliabue P. Pediatr Res; 2010 Jan 26; 67(1):11-6. PubMed ID: 19755932 [Abstract] [Full Text] [Related]
10. Assessment of an alternative calibration technique to record breathing pattern and its variability with respiratory inductive plethysmography. Lo WLA, Huang DF. J Clin Monit Comput; 2017 Aug 26; 31(4):755-764. PubMed ID: 27289525 [Abstract] [Full Text] [Related]
11. Optoelectronic Plethysmography in Clinical Practice and Research: A Review. Massaroni C, Carraro E, Vianello A, Miccinilli S, Morrone M, Levai IK, Schena E, Saccomandi P, Sterzi S, Dickinson JW, Winter S, Silvestri S. Respiration; 2017 Aug 26; 93(5):339-354. PubMed ID: 28329750 [Abstract] [Full Text] [Related]
12. Estimation of end-expiratory lung volume variations by optoelectronic plethysmography. Dellacà RL, Aliverti A, Pelosi P, Carlesso E, Chiumello D, Pedotti A, Gattinoni L. Crit Care Med; 2001 Sep 26; 29(9):1807-11. PubMed ID: 11546992 [Abstract] [Full Text] [Related]
13. Optoelectronic plethysmography: a review of the literature. Parreira VF, Vieira DS, Myrrha MA, Pessoa IM, Lage SM, Britto RR. Rev Bras Fisioter; 2012 Sep 26; 16(6):439-53. PubMed ID: 23184278 [Abstract] [Full Text] [Related]
14. Analysis of breathing via optoelectronic systems: comparison of four methods for computing breathing volumes and thoraco-abdominal motion pattern. Massaroni C, Senesi G, Schena E, Silvestri S. Comput Methods Biomech Biomed Engin; 2017 Dec 26; 20(16):1678-1689. PubMed ID: 29164909 [Abstract] [Full Text] [Related]
15. A comparison of currently available optoelectronic motion capture systems. Topley M, Richards JG. J Biomech; 2020 Jun 09; 106():109820. PubMed ID: 32517978 [Abstract] [Full Text] [Related]
16. A novel validation and calibration method for motion capture systems based on micro-triangulation. Nagymáté G, Tuchband T, Kiss RM. J Biomech; 2018 Jun 06; 74():16-22. PubMed ID: 29678420 [Abstract] [Full Text] [Related]
17. A Novel Method to Compute Breathing Volumes via Motion Capture Systems: Design and Experimental Trials. Massaroni C, Cassetta E, Silvestri S. J Appl Biomech; 2017 Oct 01; 33(5):361-365. PubMed ID: 28338381 [Abstract] [Full Text] [Related]
18. Efficacy of Marker-Based Motion Capture for Respiratory Cycle Measurement: A Comparison with Spirometry. Shamantseva ND, Klishkovskaia TA, Ananyev SS, Aksenov AY, Moshonkina TR. Sensors (Basel); 2023 Dec 10; 23(24):. PubMed ID: 38139582 [Abstract] [Full Text] [Related]
19. Comparison of a priori calibration models for respiratory inductance plethysmography during running. Leutheuser H, Heyde C, Gollhofer A, Eskofier BM. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Dec 10; 2014():6393-6. PubMed ID: 25571459 [Abstract] [Full Text] [Related]
20. Error analysis of a natural breathing calibration method for respiratory inductive plethysmography. Strömberg NO. Med Biol Eng Comput; 2001 May 10; 39(3):310-4. PubMed ID: 11465885 [Abstract] [Full Text] [Related] Page: [Next] [New Search]