These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 28273511
1. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds. McNeece BT, Pant SR, Sharma K, Niruala P, Lawrence GW, Klink VP. Plant Physiol Biochem; 2017 May; 114():60-71. PubMed ID: 28273511 [Abstract] [Full Text] [Related]
6. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines. McNeece BT, Sharma K, Lawrence GW, Lawrence KS, Klink VP. Plant Physiol Biochem; 2019 Apr; 137():25-41. PubMed ID: 30711881 [Abstract] [Full Text] [Related]
7. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton). Klink VP, Alkharouf NW, Lawrence KS, Lawaju BR, Sharma K, Niraula PM, McNeece BT. Transgenic Res; 2022 Oct; 31(4-5):457-487. PubMed ID: 35763120 [Abstract] [Full Text] [Related]
9. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Klink VP, Hosseini P, Matsye P, Alkharouf NW, Matthews BF. Plant Mol Biol; 2009 Dec; 71(6):525-67. PubMed ID: 19787434 [Abstract] [Full Text] [Related]
10. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. Matsye PD, Lawrence GW, Youssef RM, Kim KH, Lawrence KS, Matthews BF, Klink VP. Plant Mol Biol; 2012 Sep; 80(2):131-55. PubMed ID: 22689004 [Abstract] [Full Text] [Related]
11. The central circadian regulator CCA1 functions in Glycine max during defense to a root pathogen, regulating the expression of genes acting in effector triggered immunity (ETI) and cell wall metabolism. Niraula PM, McNeece BT, Sharma K, Alkharouf NW, Lawrence KS, Klink VP. Plant Physiol Biochem; 2022 Aug 15; 185():198-220. PubMed ID: 35704989 [Abstract] [Full Text] [Related]
12. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines. Pant SR, Matsye PD, McNeece BT, Sharma K, Krishnavajhala A, Lawrence GW, Klink VP. Plant Mol Biol; 2014 May 15; 85(1-2):107-21. PubMed ID: 24452833 [Abstract] [Full Text] [Related]
13. Glycine max polygalacturonase inhibiting protein 11 (GmPGIP11) functions in the root to suppress Heterodera glycines parasitism. Acharya S, Troell HA, Billingsley RL, Lawrence KS, McKirgan DS, Alkharouf NW, Klink VP. Plant Physiol Biochem; 2024 Aug 15; 213():108755. PubMed ID: 38875777 [Abstract] [Full Text] [Related]
14. Conserved oligomeric Golgi (COG) complex genes functioning in defense are expressed in root cells undergoing a defense response to a pathogenic infection and exhibit regulation my MAPKs. Klink VP, Darwish O, Alkharouf NW, Lawaju BR, Khatri R, Lawrence KS. PLoS One; 2021 Aug 15; 16(8):e0256472. PubMed ID: 34437620 [Abstract] [Full Text] [Related]
15. Overexpression of MIC-3 indicates a direct role for the MIC gene family in mediating Upland cotton (Gossypium hirsutum) resistance to root-knot nematode (Meloidogyne incognita). Wubben MJ, Callahan FE, Velten J, Burke JJ, Jenkins JN. Theor Appl Genet; 2015 Feb 15; 128(2):199-209. PubMed ID: 25376794 [Abstract] [Full Text] [Related]
16. Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF. Plant Mol Biol; 2011 Jan 15; 75(1-2):141-65. PubMed ID: 21153862 [Abstract] [Full Text] [Related]
17. Coupling of MIC-3 overexpression with the chromosomes 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton (Gossypium hirsutum). Wubben MJ, Callahan FE, Jenkins JN, Deng DD. Theor Appl Genet; 2016 Sep 15; 129(9):1759-67. PubMed ID: 27314265 [Abstract] [Full Text] [Related]
18. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection. Li S, Chen Y, Zhu X, Wang Y, Jung KH, Chen L, Xuan Y, Duan Y. J Plant Physiol; 2018 Jan 15; 220():96-104. PubMed ID: 29169106 [Abstract] [Full Text] [Related]
19. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines. Niraula PM, Zhang X, Jeremic D, Lawrence KS, Klink VP. PLoS One; 2021 Jan 15; 16(1):e0244305. PubMed ID: 33444331 [Abstract] [Full Text] [Related]
20. Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines. Niraula PM, Sharma K, McNeece BT, Troell HA, Darwish O, Alkharouf NW, Lawrence KS, Klink VP. PLoS One; 2020 Jan 15; 15(11):e0241678. PubMed ID: 33147292 [Abstract] [Full Text] [Related] Page: [Next] [New Search]