These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 28273513

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S, Yapp RD, Insana MF.
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Engineering hydrogel viscoelasticity.
    Cacopardo L, Guazzelli N, Nossa R, Mattei G, Ahluwalia A.
    J Mech Behav Biomed Mater; 2019 Jan; 89():162-167. PubMed ID: 30286375
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration.
    Chen YC, Su WY, Yang SH, Gefen A, Lin FH.
    Acta Biomater; 2013 Feb; 9(2):5181-93. PubMed ID: 23041783
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Composite hydrogels for nucleus pulposus tissue engineering.
    Strange DG, Oyen ML.
    J Mech Behav Biomed Mater; 2012 Jul; 11():16-26. PubMed ID: 22658151
    [Abstract] [Full Text] [Related]

  • 14. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z, Karkhaneh A, Khojasteh A.
    Mater Sci Eng C Mater Biol Appl; 2018 Aug 01; 89():256-264. PubMed ID: 29752097
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Removal of Cu (II) ion from water using sugar cane bagasse cellulose and gelatin based composite hydrogels.
    Maity J, Ray SK.
    Int J Biol Macromol; 2017 Apr 01; 97():238-248. PubMed ID: 28064051
    [Abstract] [Full Text] [Related]

  • 18. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels.
    Saarai A, Kasparkova V, Sedlacek T, Saha P.
    J Mech Behav Biomed Mater; 2013 Feb 01; 18():152-66. PubMed ID: 23274732
    [Abstract] [Full Text] [Related]

  • 19. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A, Navidbakhsh M.
    Biomed Tech (Berl); 2014 Dec 01; 59(6):479-86. PubMed ID: 24988278
    [Abstract] [Full Text] [Related]

  • 20. Spatiotemporal Control of Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels.
    Hui E, Gimeno KI, Guan G, Caliari SR.
    Biomacromolecules; 2019 Nov 11; 20(11):4126-4134. PubMed ID: 31600072
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.