These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 2827773
1. The thermodynamic essence of the reversible inactivation of Na+/K+-transporting ATPase by various digitalis derivatives is relaxation of enzyme conformational energy. Beer J, Kunze R, Herrmann I, Portius HJ, Mirsalichova NM, Abubakirov NK, Repke KR. Biochim Biophys Acta; 1988 Jan 22; 937(2):335-46. PubMed ID: 2827773 [Abstract] [Full Text] [Related]
2. Differentiation between isoforms of Na+/K+-transporting atpase from human and guinea-pig muscle through use of digitalis derivatives as analytical probes. Schön R, Weiland J, Megges R, Repke KR. Naunyn Schmiedebergs Arch Pharmacol; 1995 Mar 22; 351(3):282-92. PubMed ID: 7609782 [Abstract] [Full Text] [Related]
3. Digitalis structure-activity relationship analyses. Conclusions from indirect binding studies with cardiac (Na+ + K+)-ATPase. Brown L, Erdmann E, Thomas R. Biochem Pharmacol; 1983 Sep 15; 32(18):2767-74. PubMed ID: 6313008 [Abstract] [Full Text] [Related]
4. Interaction of cardiac glycosides and Na,K-ATPase is regulated by effector-controlled equilibrium between two limit enzyme conformers. Repke KR, Herrmann I, Portius HJ. Biochem Pharmacol; 1984 Jul 01; 33(13):2089-99. PubMed ID: 6331458 [Abstract] [Full Text] [Related]
5. Effects of ATP and monovalent cations on Mg2+ inhibition of (Na,K)-ATPase. Pedemonte CH, Beaugé L. Arch Biochem Biophys; 1986 Feb 01; 244(2):596-606. PubMed ID: 3004346 [Abstract] [Full Text] [Related]
6. Analysis of function-related interactions of ATP, sodium and potassium ions with Na+- and K+-transporting ATPase studied with a thiol reagent as tool. Grosse R, Eckert K, Malur J, Repke KR. Acta Biol Med Ger; 1978 Feb 01; 37(1):83-96. PubMed ID: 212908 [Abstract] [Full Text] [Related]
7. Ischemia-induced enhancement of digitalis sensitivity in isolated guinea-pig heart. Kim DH, Akera T, Kennedy RH. J Pharmacol Exp Ther; 1983 Aug 01; 226(2):335-42. PubMed ID: 6308206 [Abstract] [Full Text] [Related]
8. Structure-activity relationship at the glycosidic moiety of digitalis compounds as found in tests with NA/K-ATPase isoforms from cardiac muscle of guinea-pig and man. Weiland J, Schön R, Megges R, Repke KR, Watson TR. J Enzyme Inhib; 1994 Aug 01; 8(3):197-205. PubMed ID: 7539488 [No Abstract] [Full Text] [Related]
9. Interaction of progesterone derivatives with the digitalis target enzyme: impact of glycosidation on inhibitory potency. Weiland J, Schönfeld W, Menke KH, Repke KR. Pharmacol Res; 1991 Jan 01; 23(1):27-32. PubMed ID: 1710800 [Abstract] [Full Text] [Related]
10. How do MgATP analogues differentially modify high-affinity and low-affinity ATP binding sites of Na+/K(+)-ATPase? Serpersu EH, Bunk S, Schoner W. Eur J Biochem; 1990 Jul 31; 191(2):397-404. PubMed ID: 2166662 [Abstract] [Full Text] [Related]
11. Effects of digitalis on cell biochemistry: sodium pump inhibition. Katz AM. J Am Coll Cardiol; 1985 May 31; 5(5 Suppl A):16A-21A. PubMed ID: 2580875 [Abstract] [Full Text] [Related]
12. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport. Pauls H, Serpersu EH, Kirch U, Schoner W. Eur J Biochem; 1986 Jun 16; 157(3):585-95. PubMed ID: 2424757 [Abstract] [Full Text] [Related]
13. Origin of differences of inhibitory potency of cardiac glycosides in Na+/K+-transporting ATPase from human cardiac muscle, human brain cortex and guinea-pig cardiac muscle. Schönfeld W, Schönfeld R, Menke KH, Weiland J, Repke KR. Biochem Pharmacol; 1986 Oct 01; 35(19):3221-31. PubMed ID: 3021166 [Abstract] [Full Text] [Related]
14. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y, Yamada S, Nakao M. J Biochem; 1984 Feb 01; 95(2):359-68. PubMed ID: 6325400 [Abstract] [Full Text] [Related]
15. Inactivation of (Na+ + K+)-ATPase by chromium(III) complexes of nucleotide triphosphates. Pauls H, Bredenbröcker B, Schoner W. Eur J Biochem; 1980 Aug 01; 109(2):523-33. PubMed ID: 6250846 [Abstract] [Full Text] [Related]
16. The acceleration of Na+,K+-ATPase activity by ATP and ATP analogues. Suzuki K, Taniguchi K, Iida S. J Biol Chem; 1987 Aug 25; 262(24):11752-7. PubMed ID: 3040715 [Abstract] [Full Text] [Related]
17. Ligand-dependent reactivity of (Na+ + K+)-ATPase with showdomycin. Hara S, Hara Y, Nakao T, Nakao M. Biochim Biophys Acta; 1981 Jun 09; 644(1):53-61. PubMed ID: 6266464 [Abstract] [Full Text] [Related]
18. Binding of digitalis derivatives to beef, cat and human cardiac (Na+ + K+)-ATPase. Affinity and kinetic constants. Brown L, Erdmann E. Arch Int Pharmacodyn Ther; 1984 Oct 09; 271(2):229-40. PubMed ID: 6095779 [Abstract] [Full Text] [Related]
19. Developmental increase of digitalis receptors in guinea pig heart. Khatter JC, Hoeschen RJ. Cardiovasc Res; 1982 Feb 09; 16(2):80-5. PubMed ID: 6280863 [Abstract] [Full Text] [Related]
20. Kinetics of conformational changes associated with potassium binding to and release from Na+/K(+)-ATPase. Pratap PR, Palit A, Grassi-Nemeth E, Robinson JD. Biochim Biophys Acta; 1996 Dec 04; 1285(2):203-11. PubMed ID: 8972704 [Abstract] [Full Text] [Related] Page: [Next] [New Search]