These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 2828094

  • 1. Pro-oxidant activation of ocular reductants. 2. Lens epithelial cell cytotoxicity of a dietary quinone is associated with a stable free radical formed with glutathione in vitro.
    Wolff SP, Spector A.
    Exp Eye Res; 1987 Dec; 45(6):791-803. PubMed ID: 2828094
    [Abstract] [Full Text] [Related]

  • 2. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro.
    Wolff SP, Wang GM, Spector A.
    Exp Eye Res; 1987 Dec; 45(6):777-89. PubMed ID: 2828093
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Ascorbate-quinone interactions: electrochemical, free radical, and cytotoxic properties.
    Pethig R, Gascoyne PR, McLaughlin JA, Szent-Györgyi A.
    Proc Natl Acad Sci U S A; 1983 Jan; 80(1):129-32. PubMed ID: 6296861
    [Abstract] [Full Text] [Related]

  • 5. [The effects of anti-cataract drugs on free radicals formation in lenses].
    Fujiwara H, Tanaka N, Suzuki T.
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1071-6. PubMed ID: 1662019
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Molecular mechanisms of quinone cytotoxicity.
    O'Brien PJ.
    Chem Biol Interact; 1991 Nov; 80(1):1-41. PubMed ID: 1913977
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM.
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Glutathionyl- and hydroxyl radical formation coupled to the redox transitions of 1,4-naphthoquinone bioreductive alkylating agents during glutathione two-electron reductive addition.
    Goin J, Gibson DD, McCay PB, Cadenas E.
    Arch Biochem Biophys; 1991 Aug 01; 288(2):386-96. PubMed ID: 1654832
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Cataract induction by 1,2-naphthoquinone. I. Studies on the redox properties of bovine lens proteins.
    Kleber E, Kröner R, Elstner EF.
    Z Naturforsch C J Biosci; 1991 Aug 01; 46(3-4):280-4. PubMed ID: 1878111
    [Abstract] [Full Text] [Related]

  • 19. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C, Cadenas E.
    Biochem J; 1994 Jul 01; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.