These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
345 related items for PubMed ID: 28281746
1. Near Infrared Graphene Quantum Dots-Based Two-Photon Nanoprobe for Direct Bioimaging of Endogenous Ascorbic Acid in Living Cells. Feng LL, Wu YX, Zhang DL, Hu XX, Zhang J, Wang P, Song ZL, Zhang XB, Tan W. Anal Chem; 2017 Apr 04; 89(7):4077-4084. PubMed ID: 28281746 [Abstract] [Full Text] [Related]
2. Efficient Two-Photon Fluorescence Nanoprobe for Turn-On Detection and Imaging of Ascorbic Acid in Living Cells and Tissues. Meng HM, Zhang XB, Yang C, Kuai H, Mao GJ, Gong L, Zhang W, Feng S, Chang J. Anal Chem; 2016 Jun 07; 88(11):6057-63. PubMed ID: 27161421 [Abstract] [Full Text] [Related]
3. In-situ growth of cobalt oxyhydroxide on graphitic-phase C3N4 nanosheets for fluorescence turn-on detection and imaging of ascorbic acid in living cells. Lv Y, Jiang C, Hu K, Huang Y, He Y, Shen X, Zhao S. Mikrochim Acta; 2019 May 16; 186(6):360. PubMed ID: 31098844 [Abstract] [Full Text] [Related]
4. Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Song ZL, Dai X, Li M, Teng H, Song Z, Xie D, Luo X. Mikrochim Acta; 2018 Oct 01; 185(10):485. PubMed ID: 30276483 [Abstract] [Full Text] [Related]
5. Cobalt oxyhydroxide modified with poly-β-cyclodextrin and a cyanine dye as a nanoplatform for two-photon imaging of ascorbic acid in living cells and tissue. Yan H, Liu Y, Ren W, Shangguan J, Yang X. Mikrochim Acta; 2019 Feb 22; 186(3):201. PubMed ID: 30796531 [Abstract] [Full Text] [Related]
6. Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Zhao P, He K, Han Y, Zhang Z, Yu M, Wang H, Huang Y, Nie Z, Yao S. Anal Chem; 2015 Oct 06; 87(19):9998-10005. PubMed ID: 26358143 [Abstract] [Full Text] [Related]
7. A graphene quantum dot-based multifunctional two-photon nanoprobe for the detection and imaging of intracellular glutathione and enhanced photodynamic therapy. Meng HM, Zhao D, Li N, Chang J. Analyst; 2018 Oct 08; 143(20):4967-4973. PubMed ID: 30225468 [Abstract] [Full Text] [Related]
8. Activatable two-photon fluorescence nanoprobe for bioimaging of glutathione in living cells and tissues. Meng HM, Jin Z, Lv Y, Yang C, Zhang XB, Tan W, Yu RQ. Anal Chem; 2014 Dec 16; 86(24):12321-6. PubMed ID: 25399841 [Abstract] [Full Text] [Related]
9. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Li L, Wang C, Liu K, Wang Y, Liu K, Lin Y. Anal Chem; 2015 Mar 17; 87(6):3404-11. PubMed ID: 25697047 [Abstract] [Full Text] [Related]
10. Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for in vivo analysis of ascorbic acid. Wang C, Pan C, Wei Z, Wei X, Yang F, Mao L. Anal Chim Acta; 2020 Mar 01; 1100():191-199. PubMed ID: 31987140 [Abstract] [Full Text] [Related]
11. A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Su X, Chan C, Shi J, Tsang MK, Pan Y, Cheng C, Gerile O, Yang M. Biosens Bioelectron; 2017 Jun 15; 92():489-495. PubMed ID: 27839733 [Abstract] [Full Text] [Related]
12. Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Li N, Than A, Chen J, Xi F, Liu J, Chen P. Biomater Sci; 2018 Mar 26; 6(4):779-784. PubMed ID: 29134987 [Abstract] [Full Text] [Related]
13. A novel "turn-on" fluorometric and magnetic bi-functional strategy for ascorbic acid sensing and in vivo imaging via carbon dots-MnO2 nanosheet nanoprobe. Wang H, Na X, Liu S, Liu H, Zhang L, Xie M, Jiang Z, Han F, Li Y, Cheng S, Tan M. Talanta; 2019 Aug 15; 201():388-396. PubMed ID: 31122439 [Abstract] [Full Text] [Related]
14. Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Zhao W, Li Y, Yang S, Chen Y, Zheng J, Liu C, Qing Z, Li J, Yang R. Anal Chem; 2016 May 03; 88(9):4833-40. PubMed ID: 27072323 [Abstract] [Full Text] [Related]
15. Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. Qi J, Sun C, Li D, Zhang H, Yu W, Zebibula A, Lam JWY, Xi W, Zhu L, Cai F, Wei P, Zhu C, Kwok RTK, Streich LL, Prevedel R, Qian J, Tang BZ. ACS Nano; 2018 Aug 28; 12(8):7936-7945. PubMed ID: 30059201 [Abstract] [Full Text] [Related]
16. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. Reagen S, Wu Y, Liu X, Shahni R, Bogenschuetz J, Wu X, Chu QR, Oncel N, Zhang J, Hou X, Combs C, Vasquez A, Zhao JX. ACS Appl Mater Interfaces; 2021 Sep 22; 13(37):43952-43962. PubMed ID: 34495635 [Abstract] [Full Text] [Related]
17. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Liu H, Na W, Liu Z, Chen X, Su X. Biosens Bioelectron; 2017 Jun 15; 92():229-233. PubMed ID: 28222367 [Abstract] [Full Text] [Related]
18. Amino Nitrogen Quantum Dots-Based Nanoprobe for Fluorescence Detection and Imaging of Cysteine in Biological Samples. Tang Z, Lin Z, Li G, Hu Y. Anal Chem; 2017 Apr 04; 89(7):4238-4245. PubMed ID: 28266840 [Abstract] [Full Text] [Related]
19. S,N co-doped graphene quantum dots-induced ascorbic acid fluorescent sensor: Design, characterization and performance. Safardoust-Hojaghan H, Amiri O, Hassanpour M, Panahi-Kalamuei M, Moayedi H, Salavati-Niasari M. Food Chem; 2019 Oct 15; 295():530-536. PubMed ID: 31174792 [Abstract] [Full Text] [Related]
20. AIE-active two-photon fluorescent nanoprobe with NIR-II light excitability for highly efficient deep brain vasculature imaging. Samanta S, Huang M, Li S, Yang Z, He Y, Gu Z, Zhang J, Zhang D, Liu L, Qu J. Theranostics; 2021 Oct 15; 11(5):2137-2148. PubMed ID: 33500716 [Abstract] [Full Text] [Related] Page: [Next] [New Search]