These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 28286506

  • 1. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.
    Zidenga T, Siritunga D, Sayre RT.
    Front Plant Sci; 2017; 8():220. PubMed ID: 28286506
    [Abstract] [Full Text] [Related]

  • 2. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 3. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN, Ihemere U, Ellery C, Sayre RT.
    PLoS One; 2011 Nov; 6(7):e21996. PubMed ID: 21799761
    [Abstract] [Full Text] [Related]

  • 4. Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions.
    Pérez MD, Olaya-Abril A, Cabello P, Sáez LP, Roldán MD, Moreno-Vivián C, Luque-Almagro VM.
    Microbiol Spectr; 2021 Dec 22; 9(3):e0077721. PubMed ID: 34730416
    [Abstract] [Full Text] [Related]

  • 5. Cyanogenesis in cassava and its molecular manipulation for crop improvement.
    McMahon J, Sayre R, Zidenga T.
    J Exp Bot; 2022 Apr 05; 73(7):1853-1867. PubMed ID: 34905020
    [Abstract] [Full Text] [Related]

  • 6. Generation of cyanogen-free transgenic cassava.
    Siritunga D, Sayre RT.
    Planta; 2003 Jul 05; 217(3):367-73. PubMed ID: 14520563
    [Abstract] [Full Text] [Related]

  • 7. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification.
    Siritunga D, Arias-Garzon D, White W, Sayre RT.
    Plant Biotechnol J; 2004 Jan 05; 2(1):37-43. PubMed ID: 17166141
    [Abstract] [Full Text] [Related]

  • 8. Transgenic approaches for cyanogen reduction in cassava.
    Siritunga D, Sayre R.
    J AOAC Int; 2007 Jan 05; 90(5):1450-5. PubMed ID: 17955993
    [Abstract] [Full Text] [Related]

  • 9. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.
    O'Leary B, Preston GM, Sweetlove LJ.
    Mol Plant; 2014 Jan 05; 7(1):231-43. PubMed ID: 23825089
    [Abstract] [Full Text] [Related]

  • 10. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava.
    Juma BS, Mukami A, Mweu C, Ngugi MP, Mbinda W.
    Front Plant Sci; 2022 Jan 05; 13():1009860. PubMed ID: 36388608
    [Abstract] [Full Text] [Related]

  • 11. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).
    Riis L, Bellotti AC, Bonierbale M, O'Brien GM.
    J Econ Entomol; 2003 Dec 05; 96(6):1905-14. PubMed ID: 14977132
    [Abstract] [Full Text] [Related]

  • 12. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC, Braatz de Andrade LR, Rabbi IY, Mueller LA, Jorge de Oliveira E, Bauchet GJ.
    Plant J; 2021 Feb 05; 105(3):754-770. PubMed ID: 33164279
    [Abstract] [Full Text] [Related]

  • 13. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield.
    Obata T, Klemens PAW, Rosado-Souza L, Schlereth A, Gisel A, Stavolone L, Zierer W, Morales N, Mueller LA, Zeeman SC, Ludewig F, Stitt M, Sonnewald U, Neuhaus HE, Fernie AR.
    Plant J; 2020 Jun 05; 102(6):1202-1219. PubMed ID: 31950549
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The β-cyanoalanine synthase pathway: beyond cyanide detoxification.
    Machingura M, Salomon E, Jez JM, Ebbs SD.
    Plant Cell Environ; 2016 Oct 05; 39(10):2329-41. PubMed ID: 27116378
    [Abstract] [Full Text] [Related]

  • 16. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G.
    PLoS One; 2020 Oct 05; 15(2):e0228641. PubMed ID: 32053630
    [Abstract] [Full Text] [Related]

  • 17. Cyanogenesis in cassava. The role of hydroxynitrile lyase in root cyanide production.
    White WLB, Arias-Garzon DI, McMahon JM, Sayre RT.
    Plant Physiol; 1998 Apr 05; 116(4):1219-25. PubMed ID: 9536038
    [Abstract] [Full Text] [Related]

  • 18. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.
    Acera F, Carmona MI, Castillo F, Quesada A, Blasco R.
    Appl Environ Microbiol; 2017 May 01; 83(9):. PubMed ID: 28235872
    [Abstract] [Full Text] [Related]

  • 19. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
    Hernández T, Lundquist P, Oliveira L, Pérez Cristiá R, Rodriguez E, Rosling H.
    Nat Toxins; 1995 May 01; 3(2):114-7. PubMed ID: 7613736
    [Abstract] [Full Text] [Related]

  • 20. Iron and protein biofortification of cassava: lessons learned.
    Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT.
    Curr Opin Biotechnol; 2012 Apr 01; 23(2):257-64. PubMed ID: 22226461
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.