These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 28296061

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Optimal heating condition of ethylene-vinyl acetate co-polymer mouthguard sheet in vacuum-pressure formation.
    Takahashi M, Koide K, Suzuki H, Iwasaki S.
    Dent Traumatol; 2016 Aug; 32(4):311-5. PubMed ID: 26635146
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Heating methods for reducing unevenness softening of mouthguard sheets in vacuum-pressure formation.
    Takahashi M, Koide K, Satoh Y, Iwasaki S.
    Dent Traumatol; 2016 Aug; 32(4):316-20. PubMed ID: 26710213
    [Abstract] [Full Text] [Related]

  • 10. Shape change in mouthguard sheets during thermoforming.
    Takahashi M, Koide K, Satoh Y, Iwasaki S.
    Dent Traumatol; 2016 Oct; 32(5):379-84. PubMed ID: 26833572
    [Abstract] [Full Text] [Related]

  • 11. Thermoforming method to effectively maintain mouthguard thickness: Effect of moving the model position just before vacuum formation.
    Takahashi M, Bando Y.
    Dent Traumatol; 2019 Apr; 35(2):121-127. PubMed ID: 30300475
    [Abstract] [Full Text] [Related]

  • 12. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 3 styrene-based thermoplastic elastomer.
    Takahashi M, Satoh Y, Iwasaki SI.
    Dent Traumatol; 2016 Dec; 32(6):464-468. PubMed ID: 27059759
    [Abstract] [Full Text] [Related]

  • 13. Difference in vacuum-formed mouthguard thickness according to heating condition.
    Mizuhashi F, Koide K, Takahashi M.
    Dent Traumatol; 2015 Jun; 31(3):233-7. PubMed ID: 25351525
    [Abstract] [Full Text] [Related]

  • 14. Variations in mouthguard thickness according to fabrication method.
    Mizuhashi F, Koide K, Takahashi M.
    Dent Traumatol; 2015 Apr; 31(2):130-5. PubMed ID: 25279665
    [Abstract] [Full Text] [Related]

  • 15. Difference in pressure-formed mouthguard thickness according to heating condition.
    Mizuhashi F, Koide K, Takahashi M.
    Dent Traumatol; 2016 Feb; 32(1):22-6. PubMed ID: 26177444
    [Abstract] [Full Text] [Related]

  • 16. Influence of sheet material shape on the thickness and fit of mouthguards.
    Takahashi M, Koide K, Mizuhashi F.
    Dent Traumatol; 2014 Dec; 30(6):455-60. PubMed ID: 24720352
    [Abstract] [Full Text] [Related]

  • 17. Investigation of vacuum forming techniques for reduction of loss in mouthguard thickness: part 2—effects of sheet grooving and thermal shrinkage.
    Takahashi M, Koide K, Mizuhashi F, Sato T.
    Dent Traumatol; 2015 Aug; 31(4):314-7. PubMed ID: 25572017
    [Abstract] [Full Text] [Related]

  • 18. Thermoforming technique for maintaining the thickness of single-layer mouthguard during pressure formation.
    Takahashi M, Bando Y.
    Dent Traumatol; 2019 Oct; 35(4-5):285-290. PubMed ID: 30927555
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.