These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


381 related items for PubMed ID: 2829984

  • 1. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH.
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Oligomerization and conformation change in solutions of calf lens gamma II-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH, Beaulieu CF, Brown RD, Spiller M.
    Biophys J; 1990 Mar; 57(3):461-9. PubMed ID: 2306495
    [Abstract] [Full Text] [Related]

  • 4. Relaxometry of calf lens homogenates, including cross-relaxation by crystallin NH groups.
    Beaulieu CF, Clark JI, Brown RD, Spiller M, Koenig SH.
    Magn Reson Med; 1988 Sep; 8(1):45-57. PubMed ID: 3173068
    [Abstract] [Full Text] [Related]

  • 5. Intermolecular protein interactions in solutions of calf lens alpha-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH, Brown RD, Spiller M, Chakrabarti B, Pande A.
    Biophys J; 1992 Mar; 61(3):776-85. PubMed ID: 1504248
    [Abstract] [Full Text] [Related]

  • 6. Classes of hydration sites at protein-water interfaces: the source of contrast in magnetic resonance imaging.
    Koenig SH.
    Biophys J; 1995 Aug; 69(2):593-603. PubMed ID: 8527674
    [Abstract] [Full Text] [Related]

  • 7. Mechanism of 1H-14N cross-relaxation in immobilized proteins.
    Sunde EP, Halle B.
    J Magn Reson; 2010 Apr; 203(2):257-73. PubMed ID: 20163976
    [Abstract] [Full Text] [Related]

  • 8. Magnetization transfer in cross-linked bovine serum albumin solutions at 200 MHz: a model for tissue.
    Koenig SH, Brown RD, Ugolini R.
    Magn Reson Med; 1993 Mar; 29(3):311-6. PubMed ID: 8383788
    [Abstract] [Full Text] [Related]

  • 9. Elucidation of intermediate (mobile) and slow (solidlike) protein motions in bovine lens homogenates by carbon-13 NMR spectroscopy.
    Morgan CF, Schleich T, Caines GH, Farnsworth PN.
    Biochemistry; 1989 Jun 13; 28(12):5065-74. PubMed ID: 2765525
    [Abstract] [Full Text] [Related]

  • 10. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
    Caines GH, Schleich T, Morgan CF, Farnsworth PN.
    Biochemistry; 1990 Aug 21; 29(33):7547-57. PubMed ID: 2271517
    [Abstract] [Full Text] [Related]

  • 11. 14N1H and 2H1H cross-relaxation in hydrated proteins.
    Winter F, Kimmich R.
    Biophys J; 1985 Aug 21; 48(2):331-5. PubMed ID: 4052566
    [Abstract] [Full Text] [Related]

  • 12. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses.
    Rydzewski JM, Wang SX, Stevens A, Serdahl C, Schleich T.
    Exp Eye Res; 1993 Mar 21; 56(3):305-16. PubMed ID: 8472786
    [Abstract] [Full Text] [Related]

  • 13. Intermolecular protein interactions in solutions of bovine lens beta L-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH, Brown RD, Kenworthy AK, Magid AD, Ugolini R.
    Biophys J; 1993 Apr 21; 64(4):1178-86. PubMed ID: 8388267
    [Abstract] [Full Text] [Related]

  • 14. Measurements of proton relaxation time T2 on cattle eyes lenses.
    Gutsze A, Deninger D, Olechnowicz R, Bodurka JA.
    Lens Eye Toxic Res; 1991 Apr 21; 8(2-3):155-62. PubMed ID: 1655010
    [Abstract] [Full Text] [Related]

  • 15. Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
    Kuwata K, Brooks D, Yang H, Schleich T.
    J Magn Reson B; 1994 May 21; 104(1):11-25. PubMed ID: 8025811
    [Abstract] [Full Text] [Related]

  • 16. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study.
    Kyrychenko A, Waluk J.
    J Phys Chem A; 2006 Nov 02; 110(43):11958-67. PubMed ID: 17064184
    [Abstract] [Full Text] [Related]

  • 17. Magnetic relaxation of solvent protons by Cu2+- and VO2+-substituted transferrin: theoretical analysis and biochemical implications.
    Bertini I, Briganti F, Koenig SH, Luchinat C.
    Biochemistry; 1985 Oct 22; 24(22):6287-90. PubMed ID: 3878726
    [Abstract] [Full Text] [Related]

  • 18. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation.
    Koenig SH, Hallenga K, Shporer M.
    Proc Natl Acad Sci U S A; 1975 Jul 22; 72(7):2667-71. PubMed ID: 1058481
    [Abstract] [Full Text] [Related]

  • 19. Molecular theory of field-dependent proton spin-lattice relaxation in tissue.
    Halle B.
    Magn Reson Med; 2006 Jul 22; 56(1):60-72. PubMed ID: 16732594
    [Abstract] [Full Text] [Related]

  • 20. Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.
    Szuminska K, Gutsze A, Kowalczyk A.
    Z Naturforsch C J Biosci; 2001 Jul 22; 56(11-12):1075-81. PubMed ID: 11837660
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.