These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 28314094

  • 1. Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films.
    Chen M, Guyot-Sionnest P.
    ACS Nano; 2017 Apr 25; 11(4):4165-4173. PubMed ID: 28314094
    [Abstract] [Full Text] [Related]

  • 2. Conduction Band Fine Structure in Colloidal HgTe Quantum Dots.
    Hudson MH, Chen M, Kamysbayev V, Janke EM, Lan X, Allan G, Delerue C, Lee B, Guyot-Sionnest P, Talapin DV.
    ACS Nano; 2018 Sep 25; 12(9):9397-9404. PubMed ID: 30125488
    [Abstract] [Full Text] [Related]

  • 3. Air-Stable n-Doped Colloidal HgS Quantum Dots.
    Jeong KS, Deng Z, Keuleyan S, Liu H, Guyot-Sionnest P.
    J Phys Chem Lett; 2014 Apr 03; 5(7):1139-43. PubMed ID: 26274461
    [Abstract] [Full Text] [Related]

  • 4. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E, Keuleyan S, Guyot-Sionnest P.
    Nanotechnology; 2012 May 04; 23(17):175705. PubMed ID: 22481378
    [Abstract] [Full Text] [Related]

  • 5. HgSe Self-Doped Nanocrystals as a Platform to Investigate the Effects of Vanishing Confinement.
    Martinez B, Livache C, Notemgnou Mouafo LD, Goubet N, Keuleyan S, Cruguel H, Ithurria S, Aubin H, Ouerghi A, Doudin B, Lacaze E, Dubertret B, Silly MG, Lobo RPSM, Dayen JF, Lhuillier E.
    ACS Appl Mater Interfaces; 2017 Oct 18; 9(41):36173-36180. PubMed ID: 28956432
    [Abstract] [Full Text] [Related]

  • 6. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots.
    Yu M, Yang J, Zhang X, Yuan M, Zhang J, Gao L, Tang J, Lan X.
    Adv Mater; 2024 Jul 18; 36(27):e2311830. PubMed ID: 38501495
    [Abstract] [Full Text] [Related]

  • 7. Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots.
    Deng Z, Guyot-Sionnest P.
    ACS Nano; 2016 Feb 23; 10(2):2121-7. PubMed ID: 26820380
    [Abstract] [Full Text] [Related]

  • 8. Synthesis of Nonaggregating HgTe Colloidal Quantum Dots and the Emergence of Air-Stable n-Doping.
    Shen G, Chen M, Guyot-Sionnest P.
    J Phys Chem Lett; 2017 May 18; 8(10):2224-2228. PubMed ID: 28467091
    [Abstract] [Full Text] [Related]

  • 9. MoS2 -HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm.
    Huo N, Gupta S, Konstantatos G.
    Adv Mater; 2017 May 18; 29(17):. PubMed ID: 28247438
    [Abstract] [Full Text] [Related]

  • 10. Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz.
    Lhuillier E, Scarafagio M, Hease P, Nadal B, Aubin H, Xu XZ, Lequeux N, Patriarche G, Ithurria S, Dubertret B.
    Nano Lett; 2016 Feb 10; 16(2):1282-6. PubMed ID: 26753599
    [Abstract] [Full Text] [Related]

  • 11. Enhanced Thermal Stability of Conductive Mercury Telluride Colloidal Quantum Dot Thin Films Using Atomic Layer Deposition.
    Malachosky EW, Ackerman MM, Stan L.
    Nanomaterials (Basel); 2024 Aug 16; 14(16):. PubMed ID: 39195392
    [Abstract] [Full Text] [Related]

  • 12. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.
    Melnychuk C, Guyot-Sionnest P.
    J Phys Chem Lett; 2018 May 03; 9(9):2208-2211. PubMed ID: 29648452
    [Abstract] [Full Text] [Related]

  • 13. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM, Tang X, Guyot-Sionnest P.
    ACS Nano; 2018 Jul 24; 12(7):7264-7271. PubMed ID: 29975502
    [Abstract] [Full Text] [Related]

  • 14. Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots.
    Chen M, Hao Q, Luo Y, Tang X.
    ACS Nano; 2022 Jul 26; 16(7):11027-11035. PubMed ID: 35792103
    [Abstract] [Full Text] [Related]

  • 15. A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review.
    Ingole PP.
    Phys Chem Chem Phys; 2019 Feb 27; 21(9):4695-4716. PubMed ID: 30775741
    [Abstract] [Full Text] [Related]

  • 16. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.
    Miller EM, Kroupa DM, Zhang J, Schulz P, Marshall AR, Kahn A, Lany S, Luther JM, Beard MC, Perkins CL, van de Lagemaat J.
    ACS Nano; 2016 Mar 22; 10(3):3302-11. PubMed ID: 26895310
    [Abstract] [Full Text] [Related]

  • 17. Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters.
    Izquierdo E, Robin A, Keuleyan S, Lequeux N, Lhuillier E, Ithurria S.
    J Am Chem Soc; 2016 Aug 24; 138(33):10496-501. PubMed ID: 27487074
    [Abstract] [Full Text] [Related]

  • 18. Auger Suppression in n-Type HgSe Colloidal Quantum Dots.
    Melnychuk C, Guyot-Sionnest P.
    ACS Nano; 2019 Sep 24; 13(9):10512-10519. PubMed ID: 31436950
    [Abstract] [Full Text] [Related]

  • 19. Ligand-Engineered HgTe Colloidal Quantum Dot Solids for Infrared Photodetectors.
    Yang J, Hu H, Lv Y, Yuan M, Wang B, He Z, Chen S, Wang Y, Hu Z, Yu M, Zhang X, He J, Zhang J, Liu H, Hsu HY, Tang J, Song H, Lan X.
    Nano Lett; 2022 Apr 27; 22(8):3465-3472. PubMed ID: 35435694
    [Abstract] [Full Text] [Related]

  • 20. Wave-Function Engineering in HgSe/HgTe Colloidal Heterostructures To Enhance Mid-infrared Photoconductive Properties.
    Goubet N, Livache C, Martinez B, Xu XZ, Ithurria S, Royer S, Cruguel H, Patriarche G, Ouerghi A, Silly M, Dubertret B, Lhuillier E.
    Nano Lett; 2018 Jul 11; 18(7):4590-4597. PubMed ID: 29812951
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.