These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


676 related items for PubMed ID: 28317257

  • 1. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.
    Mueller P, Granse D, Nolte S, Do HT, Weingartner M, Hoth S, Jensen K.
    Ecol Appl; 2017 Jul; 27(5):1435-1450. PubMed ID: 28317257
    [Abstract] [Full Text] [Related]

  • 2. Grazing mediates soil microbial activity and litter decomposition in salt marshes.
    Tang H, Nolte S, Jensen K, Yang Z, Wu J, Mueller P.
    Sci Total Environ; 2020 Jun 10; 720():137559. PubMed ID: 32325578
    [Abstract] [Full Text] [Related]

  • 3. Salinity affects microbial activity and soil organic matter content in tidal wetlands.
    Morrissey EM, Gillespie JL, Morina JC, Franklin RB.
    Glob Chang Biol; 2014 Apr 10; 20(4):1351-62. PubMed ID: 24307658
    [Abstract] [Full Text] [Related]

  • 4. Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe.
    Xun W, Yan R, Ren Y, Jin D, Xiong W, Zhang G, Cui Z, Xin X, Zhang R.
    Microbiome; 2018 Sep 20; 6(1):170. PubMed ID: 30236158
    [Abstract] [Full Text] [Related]

  • 5. Impacts of Phragmites australis Invasion on Soil Enzyme Activities and Microbial Abundance of Tidal Marshes.
    Kim S, Kang J, Megonigal JP, Kang H, Seo J, Ding W.
    Microb Ecol; 2018 Oct 20; 76(3):782-790. PubMed ID: 29536132
    [Abstract] [Full Text] [Related]

  • 6. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.
    Stagg CL, Schoolmaster DR, Krauss KW, Cormier N, Conner WH.
    Ecology; 2017 Aug 20; 98(8):2003-2018. PubMed ID: 28489250
    [Abstract] [Full Text] [Related]

  • 7. Plants mediate soil organic matter decomposition in response to sea level rise.
    Mueller P, Jensen K, Megonigal JP.
    Glob Chang Biol; 2016 Jan 20; 22(1):404-14. PubMed ID: 26342160
    [Abstract] [Full Text] [Related]

  • 8. Unrecognized controls on microbial functioning in Blue Carbon ecosystems: The role of mineral enzyme stabilization and allochthonous substrate supply.
    Mueller P, Granse D, Nolte S, Weingartner M, Hoth S, Jensen K.
    Ecol Evol; 2020 Jan 20; 10(2):998-1011. PubMed ID: 32015860
    [Abstract] [Full Text] [Related]

  • 9. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.
    Wang P, Liu Y, Li L, Cheng K, Zheng J, Zhang X, Zheng J, Joseph S, Pan G.
    Sci Rep; 2015 Oct 27; 5():15704. PubMed ID: 26503629
    [Abstract] [Full Text] [Related]

  • 10. Herbivory changes soil microbial communities and greenhouse gas fluxes in a high-latitude wetland.
    Foley KM, Beard KH, Atwood TB, Waring BG.
    Microb Ecol; 2022 Jan 27; 83(1):127-136. PubMed ID: 33751165
    [Abstract] [Full Text] [Related]

  • 11. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands.
    Dang C, Morrissey EM, Neubauer SC, Franklin RB.
    Glob Chang Biol; 2019 Feb 27; 25(2):549-561. PubMed ID: 30537235
    [Abstract] [Full Text] [Related]

  • 12. Climate and mineral accretion as drivers of mineral-associated and particulate organic matter accumulation in tidal wetland soils.
    Fu C, Li Y, Zeng L, Tu C, Wang X, Ma H, Xiao L, Christie P, Luo Y.
    Glob Chang Biol; 2024 Jan 27; 30(1):e17070. PubMed ID: 38273549
    [Abstract] [Full Text] [Related]

  • 13. Mangrove wetland recovery enhances soil carbon sequestration capacity of soil aggregates and microbial network stability in southeastern China.
    Hou N, Yang X, Wang W, Sardans J, Yin X, Jiang F, Song Z, Li Z, Tian J, Ding X, Zhou J, Tariq A, Peñuelas J.
    Sci Total Environ; 2024 Nov 15; 951():175586. PubMed ID: 39154998
    [Abstract] [Full Text] [Related]

  • 14. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.
    Zhou G, Zhou X, He Y, Shao J, Hu Z, Liu R, Zhou H, Hosseinibai S.
    Glob Chang Biol; 2017 Mar 15; 23(3):1167-1179. PubMed ID: 27416555
    [Abstract] [Full Text] [Related]

  • 15. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary.
    Van de Broek M, Vandendriessche C, Poppelmonde D, Merckx R, Temmerman S, Govers G.
    Glob Chang Biol; 2018 Jun 15; 24(6):2498-2512. PubMed ID: 29431887
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.
    Chaudhary DR, Kim J, Kang H.
    Microb Ecol; 2018 Apr 15; 75(3):729-738. PubMed ID: 28986657
    [Abstract] [Full Text] [Related]

  • 19. Direct and indirect pathways of land management effects on wetland plant litter decomposition.
    Guo Y, Boughton EH, Liao HL, Sonnier G, Qiu J.
    Sci Total Environ; 2023 Jan 01; 854():158789. PubMed ID: 36122731
    [Abstract] [Full Text] [Related]

  • 20. Grazing-driven shifts in soil bacterial community structure and function in a typical steppe are mediated by additional N inputs.
    Li L, He XZ, Wang M, Huang L, Wang Z, Zhang X, Hu J, Hou F.
    Sci Total Environ; 2024 Feb 20; 912():169488. PubMed ID: 38142006
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.