These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
562 related items for PubMed ID: 28321936
1. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Zheng Y, Cui X, Su L, Fang S, Chu J, Gong Q, Yang J, Zhu Z. Plant J; 2017 Jun; 90(6):1144-1155. PubMed ID: 28321936 [Abstract] [Full Text] [Related]
2. COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation. Lian N, Liu X, Wang X, Zhou Y, Li H, Li J, Mao T. Proc Natl Acad Sci U S A; 2017 Nov 14; 114(46):12321-12326. PubMed ID: 29087315 [Abstract] [Full Text] [Related]
3. Jasmonate suppresses seedling soil emergence in Arabidopsis thaliana. Yao L, Zheng Y, Zhu Z. Plant Signal Behav; 2017 Jun 03; 12(6):e1330239. PubMed ID: 28534718 [Abstract] [Full Text] [Related]
4. Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development. Srivastava AK, Senapati D, Srivastava A, Chakraborty M, Gangappa SN, Chattopadhyay S. Plant Physiol; 2015 Dec 03; 169(4):2922-34. PubMed ID: 26474641 [Abstract] [Full Text] [Related]
5. FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Wang JG, Chen CH, Chien CT, Hsieh HL. Plant Physiol; 2011 Jun 03; 156(2):631-46. PubMed ID: 21525334 [Abstract] [Full Text] [Related]
6. Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation. Liang X, Wang H, Mao L, Hu Y, Dong T, Zhang Y, Wang X, Bi Y. Planta; 2012 Dec 03; 236(6):1791-802. PubMed ID: 22890836 [Abstract] [Full Text] [Related]
7. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Chang CS, Maloof JN, Wu SH. Plant Physiol; 2011 May 03; 156(1):228-39. PubMed ID: 21427283 [Abstract] [Full Text] [Related]
8. Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, Ma L, Huang R. PLoS Genet; 2013 May 03; 9(12):e1004025. PubMed ID: 24348273 [Abstract] [Full Text] [Related]
9. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. Cañibano E, Bourbousse C, García-León M, Garnelo Gómez B, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. Mol Plant; 2021 Jun 07; 14(6):963-982. PubMed ID: 33711490 [Abstract] [Full Text] [Related]
10. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Liu B, Zuo Z, Liu H, Liu X, Lin C. Genes Dev; 2011 May 15; 25(10):1029-34. PubMed ID: 21511871 [Abstract] [Full Text] [Related]
11. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J, Chen H, Deng XW. Plant Cell; 2012 Nov 15; 24(11):4590-606. PubMed ID: 23150635 [Abstract] [Full Text] [Related]
12. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. Park YJ, Lee HJ, Ha JH, Kim JY, Park CM. New Phytol; 2017 Jul 15; 215(1):269-280. PubMed ID: 28418582 [Abstract] [Full Text] [Related]
13. S-nitrosylation may inhibit the activity of COP1 in plant photomorphogenesis. Zhang Q, Cai X, Wu B, Tong B, Xu D, Wang J, Cui B, Yin R, Lin L. Biochem Biophys Res Commun; 2024 Jul 30; 719():150096. PubMed ID: 38749091 [Abstract] [Full Text] [Related]
14. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity. Lin XL, Niu D, Hu ZL, Kim DH, Jin YH, Cai B, Liu P, Miura K, Yun DJ, Kim WY, Lin R, Jin JB. PLoS Genet; 2016 Apr 30; 12(4):e1006016. PubMed ID: 27128446 [Abstract] [Full Text] [Related]
15. COP1 and BBXs-HY5-mediated light signal transduction in plants. Xu D. New Phytol; 2020 Dec 30; 228(6):1748-1753. PubMed ID: 31664720 [Abstract] [Full Text] [Related]
16. A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis. Kathare PK, Xu X, Nguyen A, Huq E. Plant J; 2020 Sep 30; 104(1):113-123. PubMed ID: 32652745 [Abstract] [Full Text] [Related]
17. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Rolauffs S, Fackendahl P, Sahm J, Fiene G, Hoecker U. Plant Physiol; 2012 Dec 30; 160(4):2015-27. PubMed ID: 23093358 [Abstract] [Full Text] [Related]
18. Experimental Procedures for Studying Skotomorphogenesis in Arabidopsis thaliana. Jin H, Li H, Zhu Z. Methods Mol Biol; 2021 Dec 30; 2297():49-60. PubMed ID: 33656669 [Abstract] [Full Text] [Related]
19. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis. Pham VN, Kathare PK, Huq E. Plant J; 2018 Oct 30; 96(2):260-273. PubMed ID: 30144338 [Abstract] [Full Text] [Related]
20. COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing CCA1 and PIF4 expression in Arabidopsis. Zhao X, Jiang Y, Li J, Huq E, Chen ZJ, Xu D, Deng XW. Proc Natl Acad Sci U S A; 2018 Nov 06; 115(45):11631-11636. PubMed ID: 30352855 [Abstract] [Full Text] [Related] Page: [Next] [New Search]