These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
267 related items for PubMed ID: 28324641
1. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers. Kim IA, Rhee SH. J Biomed Mater Res A; 2017 Jul; 105(7):1973-1983. PubMed ID: 28324641 [Abstract] [Full Text] [Related]
2. The evaluation of hydroxyl ions as a nucleating agent for apatite on electrospun non-woven poly( ϵ -caprolactone) fabric. Kim HS, Um SH, Rhee SH. J Biomater Sci Polym Ed; 2012 Jul; 23(10):1325-38. PubMed ID: 21722420 [Abstract] [Full Text] [Related]
3. Comparative in vitro and in vivo studies using a bioactive poly(epsilon-caprolactone)-organosiloxane nanohybrid containing calcium salt. Yoo JJ, Lee JE, Kim HJ, Kim SJ, Lim JH, Lee SJ, Lee JI, Lee YK, Lim BS, Rhee SH. J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):189-98. PubMed ID: 17385222 [Abstract] [Full Text] [Related]
4. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid. Oyane A, Uchida M, Choong C, Triffitt J, Jones J, Ito A. Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244 [Abstract] [Full Text] [Related]
5. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. Oyane A, Uchida M, Yokoyama Y, Choong C, Triffitt J, Ito A. J Biomed Mater Res A; 2005 Oct 01; 75(1):138-45. PubMed ID: 16044403 [Abstract] [Full Text] [Related]
6. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds. Zamani Y, Mohammadi J, Amoabediny G, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J. Biomed Mater; 2018 Nov 13; 14(1):015008. PubMed ID: 30421722 [Abstract] [Full Text] [Related]
7. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation. Choong C, Yuan S, Thian ES, Oyane A, Triffitt J. J Biomed Mater Res A; 2012 Feb 13; 100(2):353-61. PubMed ID: 22065559 [Abstract] [Full Text] [Related]
8. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E, Erdemli Ö, Keskin D, Tezcaner A. J Biomater Appl; 2017 Mar 13; 31(8):1148-1168. PubMed ID: 27881642 [Abstract] [Full Text] [Related]
9. Optimization of the activation and nucleation steps in the precipitation of a calcium phosphate primer layer on electrospun poly(ɛ-caprolactone). Luickx N, Van den Vreken N, D'Oosterlinck W, Van der Schueren L, Declercq H, De Clerck K, Cornelissen M, Verbeeck R. J Biomed Mater Res A; 2015 Feb 13; 103(2):511-24. PubMed ID: 24733786 [Abstract] [Full Text] [Related]
10. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. Seol YJ, Kim KH, Kim IA, Rhee SH. J Biomed Mater Res A; 2010 Aug 13; 94(2):649-59. PubMed ID: 20213814 [Abstract] [Full Text] [Related]
11. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, Othman R. Biomed Mater; 2015 Jul 30; 10(4):045011. PubMed ID: 26225725 [Abstract] [Full Text] [Related]
12. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X, Mi HY, Wang XC, Peng XF, Turng LS. ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6955-65. PubMed ID: 25761418 [Abstract] [Full Text] [Related]
13. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. Tuzlakoglu K, Reis RL. J Mater Sci Mater Med; 2007 Jul 01; 18(7):1279-86. PubMed ID: 17431748 [Abstract] [Full Text] [Related]
14. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material. Holmbom J, Södergård A, Ekholm E, Märtson M, Kuusilehto A, Saukko P, Penttinen R. J Biomed Mater Res A; 2005 Nov 01; 75(2):308-15. PubMed ID: 16059893 [Abstract] [Full Text] [Related]
15. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Li X, Xie J, Yuan X, Xia Y. Langmuir; 2008 Dec 16; 24(24):14145-50. PubMed ID: 19053657 [Abstract] [Full Text] [Related]
16. Biomimetic coating of an apatite layer on poly(L-lactic acid); improvement of adhesive strength of the coating. Yokoyama Y, Oyane A, Ito A. J Mater Sci Mater Med; 2007 Sep 16; 18(9):1727-34. PubMed ID: 17483906 [Abstract] [Full Text] [Related]
17. Micro-computed tomography (micro-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds. Oliveira AL, Malafaya PB, Costa SA, Sousa RA, Reis RL. J Mater Sci Mater Med; 2007 Feb 16; 18(2):211-23. PubMed ID: 17323152 [Abstract] [Full Text] [Related]
18. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z, Lin L, Si J, Luo Y, Wang Q, Lin Y, Wang X, Chen W. J Biomater Sci Polym Ed; 2017 Jun 16; 28(9):826-845. PubMed ID: 28278041 [Abstract] [Full Text] [Related]
19. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, Schantz JT. Int J Oral Maxillofac Surg; 2006 Oct 16; 35(10):928-34. PubMed ID: 16762529 [Abstract] [Full Text] [Related]
20. Electrophoretic deposition of silicon-substituted hydroxyapatite/poly(epsilon-caprolactone) composite coatings. Xiao X, Liu R, Tang X. J Mater Sci Mater Med; 2009 Mar 16; 20(3):691-7. PubMed ID: 18949536 [Abstract] [Full Text] [Related] Page: [Next] [New Search]