These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


362 related items for PubMed ID: 28324936

  • 1. A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement.
    Jing Liu, Yuan-Ting Zhang, Xiao-Rong Ding, Wen-Xuan Dai, Ni Zhao.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():615-618. PubMed ID: 28324936
    [Abstract] [Full Text] [Related]

  • 2. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J, Li Y, Ding XR, Dai WX, Zhang YT.
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5973-6. PubMed ID: 26737652
    [Abstract] [Full Text] [Related]

  • 3. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H, Baig M, Rastegar S, Lindén M.
    Stud Health Technol Inform; 2018 Aug; 249():77-83. PubMed ID: 29866960
    [Abstract] [Full Text] [Related]

  • 4. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms.
    Zuhair Sameen A, Jaafar R, Zahedi E, Kok Beng G.
    J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952
    [Abstract] [Full Text] [Related]

  • 5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y, Wang Z, Zhang L, Yang X, Song J.
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [Abstract] [Full Text] [Related]

  • 6. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S, Dajani HR, Meade RD, Kenny GP, Bolic M.
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [Abstract] [Full Text] [Related]

  • 7. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.
    Gao M, Olivier NB, Mukkamala R.
    Physiol Rep; 2016 May; 4(10):. PubMed ID: 27233300
    [Abstract] [Full Text] [Related]

  • 8. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography.
    Huynh TH, Jafari R, Chung WY.
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):967-976. PubMed ID: 30130167
    [Abstract] [Full Text] [Related]

  • 9. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q, Zhou D, Zeng X.
    Biomed Eng Online; 2017 Feb 06; 16(1):23. PubMed ID: 28166774
    [Abstract] [Full Text] [Related]

  • 10. Introducing Contactless Blood Pressure Assessment Using a High Speed Video Camera.
    Jeong IC, Finkelstein J.
    J Med Syst; 2016 Apr 06; 40(4):77. PubMed ID: 26791993
    [Abstract] [Full Text] [Related]

  • 11. Comparison of cuff-based and cuffless continuous blood pressure measurements in children and adolescents.
    Zachwieja J, Neyman-Bartkowiak A, Rabiega A, Wojciechowska M, Barabasz M, Musielak A, Silska-Dittmar M, Ostalska-Nowicka D.
    Clin Exp Hypertens; 2020 Aug 17; 42(6):512-518. PubMed ID: 31941385
    [Abstract] [Full Text] [Related]

  • 12. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J, Kang Y, Park J, Joung Y, Koo C.
    Sensors (Basel); 2023 Feb 03; 23(3):. PubMed ID: 36772724
    [Abstract] [Full Text] [Related]

  • 13. The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time.
    Yousefian P, Shin S, Mousavi A, Kim CS, Mukkamala R, Jang DG, Ko BH, Lee J, Kwon UK, Kim YH, Hahn JO.
    Sci Rep; 2019 Jul 23; 9(1):10666. PubMed ID: 31337783
    [Abstract] [Full Text] [Related]

  • 14. Accuracy and User Acceptability of 24-hour Ambulatory Blood Pressure Monitoring by a Prototype Cuffless Multi-Sensor Device Compared to a Conventional Oscillometric Device.
    Heimark S, Hove C, Stepanov A, Boysen ES, Gløersen Ø, Bøtke-Rasmussen KG, Gravdal HJ, Narayanapillai K, Fadl Elmula FEM, Seeberg TM, Larstorp ACK, Waldum-Grevbo B.
    Blood Press; 2023 Dec 23; 32(1):2274595. PubMed ID: 37885101
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Causal inference based cuffless blood pressure estimation: A pilot study.
    Liu L, Zhang YT, Wang W, Chen Y, Ding X.
    Comput Biol Med; 2023 Jun 23; 159():106900. PubMed ID: 37087777
    [Abstract] [Full Text] [Related]

  • 18. PCA-Based Multi-Wavelength Photoplethysmography Algorithm for Cuffless Blood Pressure Measurement on Elderly Subjects.
    Liu J, Qiu S, Luo N, Lau SK, Yu H, Kwok T, Zhang YT, Zhao N.
    IEEE J Biomed Health Inform; 2021 Mar 23; 25(3):663-673. PubMed ID: 32750946
    [Abstract] [Full Text] [Related]

  • 19. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR, Zhang YT.
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Mar 23; 2015():398-401. PubMed ID: 26736283
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.