These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


364 related items for PubMed ID: 28328067

  • 1. Diminishing returns limit energetic costs of climate change.
    Levy O, Borchert JD, Rusch TW, Buckley LB, Angilletta MJ.
    Ecology; 2017 May; 98(5):1217-1228. PubMed ID: 28328067
    [Abstract] [Full Text] [Related]

  • 2. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ, While GM, Beeton NJ, Wapstra E.
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [Abstract] [Full Text] [Related]

  • 3. The peak of thermoregulation effectiveness: Thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali (Squamata, Lacertidae).
    Ortega Z, Mencía A, Pérez-Mellado V.
    J Therm Biol; 2016 Feb; 56():77-83. PubMed ID: 26857980
    [Abstract] [Full Text] [Related]

  • 4. Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?
    Walker S, Stuart-Fox D, Kearney MR.
    J Therm Biol; 2015 Dec; 54():66-77. PubMed ID: 26615728
    [Abstract] [Full Text] [Related]

  • 5. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai-Tibetan Plateau.
    Sinervo B, Miles DB, Wu Y, Méndez-DE LA Cruz FR, Kirchhof S, Qi Y.
    Integr Zool; 2018 Jul; 13(4):450-470. PubMed ID: 29436768
    [Abstract] [Full Text] [Related]

  • 6. Support for the thermal coadaptation hypothesis from the growth rates of Sceloporus jarrovii lizards.
    Patterson LD, Darveau CA, Blouin-Demers G.
    J Therm Biol; 2017 Dec; 70(Pt B):86-96. PubMed ID: 29108562
    [Abstract] [Full Text] [Related]

  • 7. Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population.
    Domínguez-Guerrero SF, Muñoz MM, Pasten-Téllez DJ, Arenas-Moreno DM, Rodríguez-Miranda LA, Manríquez-Morán NL, Méndez-de la Cruz FR.
    J Therm Biol; 2019 Jan; 79():135-143. PubMed ID: 30612673
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL, Fernández JB, Ibargüengoytía NR.
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [Abstract] [Full Text] [Related]

  • 12. Thermal heterogeneity of selected retreats in cool-temperate viviparous lizards suggests a potential benefit of future climate warming.
    Chukwuka CO, Mello RSR, Cree A, Monks JM.
    J Therm Biol; 2021 Apr; 97():102869. PubMed ID: 33863433
    [Abstract] [Full Text] [Related]

  • 13. Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species.
    Vicente Liz A, Santos V, Ribeiro T, Guimarães M, Verrastro L.
    PLoS One; 2019 Apr; 14(12):e0226399. PubMed ID: 31856183
    [Abstract] [Full Text] [Related]

  • 14. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain).
    Zamora-Camacho FJ, Reguera S, Moreno-Rueda G.
    Int J Biometeorol; 2016 May; 60(5):687-97. PubMed ID: 26373651
    [Abstract] [Full Text] [Related]

  • 15. To warm on the rocks, to cool in the wind: Thermal relations of a small-sized lizard from a mountain environment.
    Gontijo ASB, Garcia CS, Righi AF, Galdino CAB.
    J Therm Biol; 2018 Aug; 76():52-57. PubMed ID: 30143297
    [Abstract] [Full Text] [Related]

  • 16. Ecological constraints to match field and preferred temperatures in lizards Tropidurus catalanensis (Squamata; Tropiduridae).
    Maia-Carneiro T, Navas CA.
    J Therm Biol; 2021 May; 98():102903. PubMed ID: 34016370
    [Abstract] [Full Text] [Related]

  • 17. Thermal sensitivity of cold climate lizards and the importance of distributional ranges.
    Bonino MF, Moreno Azócar DL, Schulte JA, Abdala CS, Cruz FB.
    Zoology (Jena); 2015 Aug; 118(4):281-90. PubMed ID: 26066005
    [Abstract] [Full Text] [Related]

  • 18. Climate warming drives a temperate-zone lizard to its upper thermal limits, restricting activity, and increasing energetic costs.
    Doucette LI, Duncan RP, Osborne WS, Evans M, Georges A, Gruber B, Sarre SD.
    Sci Rep; 2023 Jun 13; 13(1):9603. PubMed ID: 37311881
    [Abstract] [Full Text] [Related]

  • 19. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B, Murray BR, Webb JK.
    J Exp Biol; 2017 Jun 15; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [Abstract] [Full Text] [Related]

  • 20. Oxygen supply did not affect how lizards responded to thermal stress.
    Camacho A, Vandenbrooks JM, Riley A, Telemeco RS, Angilletta MJ.
    Integr Zool; 2018 Jul 15; 13(4):428-436. PubMed ID: 29316302
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.