These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 28330286

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z.
    Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813
    [Abstract] [Full Text] [Related]

  • 3. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening.
    Liu P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W.
    Microb Cell Fact; 2019 May 10; 18(1):81. PubMed ID: 31077201
    [Abstract] [Full Text] [Related]

  • 4. Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose.
    Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z.
    Biotechnol Biofuels; 2017 May 10; 10():228. PubMed ID: 29034003
    [Abstract] [Full Text] [Related]

  • 5. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass.
    Meng QS, Liu CG, Zhao XQ, Bai FW.
    J Biotechnol; 2018 Nov 10; 285():56-63. PubMed ID: 30194052
    [Abstract] [Full Text] [Related]

  • 6. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.
    Zhang F, Bai F, Zhao X.
    Biotechnol J; 2016 Oct 10; 11(10):1282-1290. PubMed ID: 27578229
    [Abstract] [Full Text] [Related]

  • 7. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.
    Zhang J, Zhang G, Wang W, Wang W, Wei D.
    Microb Cell Fact; 2018 May 17; 17(1):75. PubMed ID: 29773074
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Disruption of the Trichoderma reesei gul1 gene stimulates hyphal branching and reduces broth viscosity in cellulase production.
    Zhao Q, Liu Q, Wang Q, Qin Y, Zhong Y, Gao L, Liu G, Qu Y.
    J Ind Microbiol Biotechnol; 2021 Apr 30; 48(1-2):. PubMed ID: 33693788
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling.
    Chen Y, Shen Y, Wang W, Wei D.
    Biotechnol Biofuels; 2018 Apr 30; 11():54. PubMed ID: 29507606
    [Abstract] [Full Text] [Related]

  • 12. Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production.
    Adsul MG, Dixit P, Saini JK, Gupta RP, Ramakumar SSV, Mathur AS.
    Biotechnol Bioeng; 2022 Aug 30; 119(8):2167-2181. PubMed ID: 35470437
    [Abstract] [Full Text] [Related]

  • 13. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30.
    Limón MC, Pakula T, Saloheimo M, Penttilä M.
    Microb Cell Fact; 2011 May 24; 10():40. PubMed ID: 21609467
    [Abstract] [Full Text] [Related]

  • 14. Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30.
    Zhang J, Wu C, Wang W, Wang W, Wei D.
    Bioresour Bioprocess; 2018 May 24; 5(1):40. PubMed ID: 32288986
    [Abstract] [Full Text] [Related]

  • 15. Global Reprogramming of Gene Transcription in Trichoderma reesei by Overexpressing an Artificial Transcription Factor for Improved Cellulase Production and Identification of Ypr1 as an Associated Regulator.
    Zhang F, Li JX, Champreda V, Liu CG, Bai FW, Zhao XQ.
    Front Bioeng Biotechnol; 2020 May 24; 8():649. PubMed ID: 32719779
    [Abstract] [Full Text] [Related]

  • 16. Effect of pH on cellulase production of Trichoderma reesei RUT C30.
    Juhász T, Szengyel Z, Szijártó N, Réczey K.
    Appl Biochem Biotechnol; 2004 May 24; 113-116():201-11. PubMed ID: 15054207
    [Abstract] [Full Text] [Related]

  • 17. Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30.
    Pirayre A, Duval L, Blugeon C, Firmo C, Perrin S, Jourdier E, Margeot A, Bidard F.
    BMC Genomics; 2020 Dec 10; 21(1):885. PubMed ID: 33302864
    [Abstract] [Full Text] [Related]

  • 18. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production.
    Fonseca LM, Parreiras LS, Murakami MT.
    Biotechnol Biofuels; 2020 Dec 10; 13():93. PubMed ID: 32461765
    [Abstract] [Full Text] [Related]

  • 19. Mechanism of Zn2+ regulation of cellulase production in Trichoderma reesei Rut-C30.
    Li N, Li J, Chen Y, Shen Y, Wei D, Wang W.
    Biotechnol Biofuels Bioprod; 2023 Apr 28; 16(1):73. PubMed ID: 37118821
    [Abstract] [Full Text] [Related]

  • 20. Application of image analysis in the fungal fermentation of Trichoderma reesei RUT-C30.
    Choy V, Patel N, Thibault J.
    Biotechnol Prog; 2011 Apr 28; 27(6):1544-53. PubMed ID: 21739622
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.