These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 28342136

  • 1. Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways.
    Du J, Liu L, Guo LZ, Yao XJ, Yang JM.
    J Comput Aided Mol Des; 2017 May; 31(5):483-495. PubMed ID: 28342136
    [Abstract] [Full Text] [Related]

  • 2. Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleTJE.
    Fang B, Xu H, Liu Y, Qi F, Zhang W, Chen H, Wang C, Wang Y, Yang W, Li S.
    Sci Rep; 2017 Mar 09; 7():44258. PubMed ID: 28276499
    [Abstract] [Full Text] [Related]

  • 3. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium.
    Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW.
    J Biol Chem; 2014 Mar 07; 289(10):6535-6550. PubMed ID: 24443585
    [Abstract] [Full Text] [Related]

  • 4. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleTJE.
    Matthews S, Belcher JD, Tee KL, Girvan HM, McLean KJ, Rigby SE, Levy CW, Leys D, Parker DA, Blankley RT, Munro AW.
    J Biol Chem; 2017 Mar 24; 292(12):5128-5143. PubMed ID: 28053093
    [Abstract] [Full Text] [Related]

  • 5. Production of alkenes and novel secondary products by P450 OleTJE using novel H2 O2 -generating fusion protein systems.
    Matthews S, Tee KL, Rattray NJ, McLean KJ, Leys D, Parker DA, Blankley RT, Munro AW.
    FEBS Lett; 2017 Mar 24; 591(5):737-750. PubMed ID: 28144940
    [Abstract] [Full Text] [Related]

  • 6. Bioengineering of Cytochrome P450 OleTJE: How Does Substrate Positioning Affect the Product Distributions?
    Reinhard FGC, Lin YT, Stańczak A, de Visser SP.
    Molecules; 2020 Jun 09; 25(11):. PubMed ID: 32526971
    [Abstract] [Full Text] [Related]

  • 7. Origin of the Regioselective Fatty-Acid Hydroxylation versus Decarboxylation by a Cytochrome P450 Peroxygenase: What Drives the Reaction to Biofuel Production?
    Faponle AS, Quesne MG, de Visser SP.
    Chemistry; 2016 Apr 11; 22(16):5478-83. PubMed ID: 26918676
    [Abstract] [Full Text] [Related]

  • 8. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleTJE.
    Chowdhury AS, Ali HS, Faponle AS, de Visser SP.
    Phys Chem Chem Phys; 2020 Dec 07; 22(46):27178-27190. PubMed ID: 33226036
    [Abstract] [Full Text] [Related]

  • 9. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase.
    Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S.
    Biotechnol Biofuels; 2014 Feb 24; 7(1):28. PubMed ID: 24565055
    [Abstract] [Full Text] [Related]

  • 10. Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation.
    Bailo E, Fruk L, Niemeyer CM, Deckert V.
    Anal Bioanal Chem; 2009 Aug 24; 394(7):1797-801. PubMed ID: 19526348
    [Abstract] [Full Text] [Related]

  • 11. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW.
    Biochemistry; 2004 May 11; 43(18):5474-87. PubMed ID: 15122913
    [Abstract] [Full Text] [Related]

  • 12. Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property.
    Jiang Y, Li Z, Wang C, Zhou YJ, Xu H, Li S.
    Biotechnol Biofuels; 2019 May 11; 12():79. PubMed ID: 30996734
    [Abstract] [Full Text] [Related]

  • 13. Different Behaviors of a Substrate in P450 Decarboxylase and Hydroxylase Reveal Reactivity-Enabling Actors.
    Bharadwaj VS, Kim S, Guarnieri MT, Crowley MF.
    Sci Rep; 2018 Aug 27; 8(1):12826. PubMed ID: 30150737
    [Abstract] [Full Text] [Related]

  • 14. Product Distributions of Cytochrome P450 OleTJE with Phenyl-Substituted Fatty Acids: A Computational Study.
    Lin YT, de Visser SP.
    Int J Mol Sci; 2021 Jul 02; 22(13):. PubMed ID: 34281222
    [Abstract] [Full Text] [Related]

  • 15. Ligand Access Channels in Cytochrome P450 Enzymes: A Review.
    Urban P, Lautier T, Pompon D, Truan G.
    Int J Mol Sci; 2018 May 30; 19(6):. PubMed ID: 29848998
    [Abstract] [Full Text] [Related]

  • 16. Molecular Dynamics Simulations of a Cytochrome P450 from Tepidiphilus thermophilus (P450-TT) Reveal How Its Substrate-Binding Channel Opens.
    Faponle AS, Roy A, Adelegan AA, Gauld JW.
    Molecules; 2021 Jun 12; 26(12):. PubMed ID: 34204747
    [Abstract] [Full Text] [Related]

  • 17. The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen Rebound Chemistry.
    Hsieh CH, Huang X, Amaya JA, Rutland CD, Keys CL, Groves JT, Austin RN, Makris TM.
    Biochemistry; 2017 Jul 05; 56(26):3347-3357. PubMed ID: 28603981
    [Abstract] [Full Text] [Related]

  • 18. Molecular dynamics simulations of P450 BM3--examination of substrate-induced conformational change.
    Chang YT, Loew GH.
    J Biomol Struct Dyn; 1999 Jun 05; 16(6):1189-203. PubMed ID: 10447203
    [Abstract] [Full Text] [Related]

  • 19. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H.
    Arch Biochem Biophys; 2001 Oct 01; 394(1):45-53. PubMed ID: 11566026
    [Abstract] [Full Text] [Related]

  • 20. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK, Lounnas V, Wade RC.
    J Mol Biol; 2000 Nov 10; 303(5):813-30. PubMed ID: 11061977
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.