These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 28344251
1. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. Lo VC, Ren Q, Pham CL, Morris VK, Kwan AH, Sunde M. Nanomaterials (Basel); 2014 Sep 17; 4(3):827-843. PubMed ID: 28344251 [Abstract] [Full Text] [Related]
2. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q, Kwan AH, Sunde M. Proteins; 2014 Jun 17; 82(6):990-1003. PubMed ID: 24218020 [Abstract] [Full Text] [Related]
3. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Chang HJ, Choi H, Na S. Colloids Surf B Biointerfaces; 2020 Nov 17; 195():111269. PubMed ID: 32739772 [Abstract] [Full Text] [Related]
4. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. Lo V, I-Chun Lai J, Sunde M. Adv Exp Med Biol; 2019 Nov 17; 1174():161-185. PubMed ID: 31713199 [Abstract] [Full Text] [Related]
5. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Ball SR, Pham CLL, Lo V, Morris VK, Kwan AH, Sunde M. Methods Mol Biol; 2020 Nov 17; 2073():55-72. PubMed ID: 31612436 [Abstract] [Full Text] [Related]
6. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. Morris VK, Kwan AH, Sunde M. J Mol Biol; 2013 Jan 23; 425(2):244-56. PubMed ID: 23137797 [Abstract] [Full Text] [Related]
7. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK, Sunde M. Methods Mol Biol; 2013 Jan 23; 996():119-29. PubMed ID: 23504421 [Abstract] [Full Text] [Related]
8. Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. Kallio JM, Linder MB, Rouvinen J. J Biol Chem; 2007 Sep 28; 282(39):28733-28739. PubMed ID: 17636262 [Abstract] [Full Text] [Related]
10. Backbone and sidechain ¹H, ¹³C and ¹⁵N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Morris VK, Kwan AH, Mackay JP, Sunde M. Biomol NMR Assign; 2012 Apr 28; 6(1):83-6. PubMed ID: 21845363 [Abstract] [Full Text] [Related]
11. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Chang HJ, Lee M, Na S. Colloids Surf B Biointerfaces; 2019 Jan 01; 173():128-138. PubMed ID: 30278361 [Abstract] [Full Text] [Related]
12. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A, Weich S, Szilvay GR, Leitner M, Tappura K, Ebner A. J Biol Chem; 2021 Jan 01; 296():100728. PubMed ID: 33933454 [Abstract] [Full Text] [Related]
13. Characterization of the structure and self-assembly of two distinct class IB hydrophobins. Vergunst KL, Kenward C, Langelaan DN. Appl Microbiol Biotechnol; 2022 Dec 01; 106(23):7831-7843. PubMed ID: 36329133 [Abstract] [Full Text] [Related]
14. Soluble Expression and Efficient Purification of Recombinant Class I Hydrophobin DewA. Ahn SO, Lim HD, You SH, Cheong DE, Kim GJ. Int J Mol Sci; 2021 Jul 22; 22(15):. PubMed ID: 34360609 [Abstract] [Full Text] [Related]
15. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins. Yang W, Ren Q, Wu YN, Morris VK, Rey AA, Braet F, Kwan AH, Sunde M. Biopolymers; 2013 Jan 22; 99(1):84-94. PubMed ID: 23097233 [Abstract] [Full Text] [Related]