These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 28357537

  • 1. Influence of Cooking Conditions on Carotenoid Content and Stability in Porridges Prepared from High-Carotenoid Maize.
    Díaz-Gómez J, Ramos AJ, Zhu C, Martín-Belloso O, Soliva-Fortuny R.
    Plant Foods Hum Nutr; 2017 Jun; 72(2):113-119. PubMed ID: 28357537
    [Abstract] [Full Text] [Related]

  • 2. Effects of three cooking methods on content changes and absorption efficiencies of carotenoids in maize.
    Zhang S, Ji J, Zhang S, Guan C, Wang G.
    Food Funct; 2020 Jan 29; 11(1):944-954. PubMed ID: 31956878
    [Abstract] [Full Text] [Related]

  • 3. β-Carotene bioaccessibility from biofortified maize (Zea mays) is related to its density and is negatively influenced by lutein and zeaxanthin.
    Dube N, Mashurabad PC, Hossain F, Pullakhandam R, Thingnganing L, Bharatraj DK.
    Food Funct; 2018 Jan 24; 9(1):379-388. PubMed ID: 29215107
    [Abstract] [Full Text] [Related]

  • 4. Retention of provitamin A carotenoids in high beta-carotene maize (Zea mays) during traditional African household processing.
    Li S, Tayie FA, Young MF, Rocheford T, White WS.
    J Agric Food Chem; 2007 Dec 26; 55(26):10744-50. PubMed ID: 18047281
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Carotenoid bioaccessibility from whole grain and degermed maize meal products.
    Kean EG, Hamaker BR, Ferruzzi MG.
    J Agric Food Chem; 2008 Nov 12; 56(21):9918-26. PubMed ID: 18937488
    [Abstract] [Full Text] [Related]

  • 7. Status of carotenoids in elite and landrace maize genotypes: Implications for provitamin A biofortification in Tanzania.
    Msungu SD, Mushongi AA, Venkataramana PB, Mbega ER.
    Food Res Int; 2022 Jun 12; 156():111303. PubMed ID: 35651063
    [Abstract] [Full Text] [Related]

  • 8. Influence of heat and moisture treatment on carotenoids, phenolic content, and antioxidant capacity of orange maize flour.
    Beta T, Hwang T.
    Food Chem; 2018 Apr 25; 246():58-64. PubMed ID: 29291878
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Carotenoid retention of biofortified provitamin A maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage.
    Mugode L, Ha B, Kaunda A, Sikombe T, Phiri S, Mutale R, Davis C, Tanumihardjo S, De Moura FF.
    J Agric Food Chem; 2014 Jul 09; 62(27):6317-25. PubMed ID: 24930501
    [Abstract] [Full Text] [Related]

  • 11. Carotenoid degradation rate in milled grain of dent maize hybrids and its relationship with the grain physicochemical properties.
    Gunjević V, Majerić Musa M, Zurak D, Svečnjak Z, Duvnjak M, Grbeša D, Kljak K.
    Food Res Int; 2024 Feb 09; 177():113909. PubMed ID: 38225147
    [Abstract] [Full Text] [Related]

  • 12. Does kernel position on the cob affect zeaxanthin, lutein and total carotenoid contents or quality parameters, in zeaxanthin-biofortified sweet-corn?
    Calvo-Brenes P, Fanning K, O'Hare T.
    Food Chem; 2019 Mar 30; 277():490-495. PubMed ID: 30502175
    [Abstract] [Full Text] [Related]

  • 13. Pro-vitamin A carotenoids stability and bioaccessibility from elite selection of biofortified cassava roots (Manihot esculenta, Crantz) processed to traditional flours and porridges.
    Aragón IJ, Ceballos H, Dufour D, Ferruzzi MG.
    Food Funct; 2018 Sep 19; 9(9):4822-4835. PubMed ID: 30131983
    [Abstract] [Full Text] [Related]

  • 14. Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods.
    Pillay K, Siwela M, Derera J, Veldman FJ.
    J Food Sci Technol; 2014 Apr 19; 51(4):634-44. PubMed ID: 24741156
    [Abstract] [Full Text] [Related]

  • 15. Carotenoid and color changes in traditionally flaked and extruded products.
    Cueto M, Farroni A, Schoenlechner R, Schleining G, Buera P.
    Food Chem; 2017 Aug 15; 229():640-645. PubMed ID: 28372225
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays sp.).
    Howe JA, Tanumihardjo SA.
    J Agric Food Chem; 2006 Oct 18; 54(21):7992-7. PubMed ID: 17032000
    [Abstract] [Full Text] [Related]

  • 17. Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces.
    da Silva Messias R, Galli V, Dos Anjos E Silva SD, Rombaldi CV.
    Nutrients; 2014 Jan 28; 6(2):546-63. PubMed ID: 24476639
    [Abstract] [Full Text] [Related]

  • 18. The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content.
    Díaz-Gómez J, Marín S, Nogareda C, Sanchis V, Ramos AJ.
    Mycotoxin Res; 2016 Nov 28; 32(4):221-228. PubMed ID: 27522218
    [Abstract] [Full Text] [Related]

  • 19. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage.
    Ortiz D, Rocheford T, Ferruzzi MG.
    J Agric Food Chem; 2016 Apr 06; 64(13):2727-36. PubMed ID: 26939642
    [Abstract] [Full Text] [Related]

  • 20. Effect of ultrasonic pretreatment on tocochromanol and carotenoid biofortification in maize (Zea mays L.) seedlings.
    Zhang B, Wen T, Xiang N, Zhao Y, Guo X.
    J Sci Food Agric; 2023 Feb 06; 103(3):1412-1420. PubMed ID: 36151954
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.