These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 28357858

  • 1. Phosphoproteomic Analysis of Paper Mulberry Reveals Phosphorylation Functions in Chilling Tolerance.
    Pi Z, Zhao ML, Peng XJ, Shen SH.
    J Proteome Res; 2017 May 05; 16(5):1944-1961. PubMed ID: 28357858
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings.
    Wang X, Shan X, Wu Y, Su S, Li S, Liu H, Han J, Xue C, Yuan Y.
    J Proteomics; 2016 Sep 02; 146():14-24. PubMed ID: 27321579
    [Abstract] [Full Text] [Related]

  • 4. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly.
    Teets NM, Denlinger DL.
    J Proteome Res; 2016 Aug 05; 15(8):2855-62. PubMed ID: 27362561
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis.
    Meng X, Zhao Q, Jin Y, Yu J, Yin Z, Chen S, Dai S.
    J Proteomics; 2016 Jun 30; 143():365-381. PubMed ID: 27130536
    [Abstract] [Full Text] [Related]

  • 7. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice.
    Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG.
    BMC Genomics; 2007 Jun 18; 8():175. PubMed ID: 17577400
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW, Ge P, Zhang M, Cheng ZW, Li XH, Yan YM.
    J Proteome Res; 2014 May 02; 13(5):2381-95. PubMed ID: 24679076
    [Abstract] [Full Text] [Related]

  • 12. Large scale phosphoprotein profiling to explore Drosophila cold acclimation regulatory mechanisms.
    Colinet H, Pineau C, Com E.
    Sci Rep; 2017 May 10; 7(1):1713. PubMed ID: 28490779
    [Abstract] [Full Text] [Related]

  • 13. [Responses of mulberry seedlings photosynthesis and antioxidant enzymes to chilling stress after low-temperature acclimation].
    Xu N, Sun GY.
    Ying Yong Sheng Tai Xue Bao; 2009 Apr 10; 20(4):761-6. PubMed ID: 19565752
    [Abstract] [Full Text] [Related]

  • 14. Phosphoproteomics unveils stable energy supply as key to flooding tolerance in Kandelia candel.
    Pan D, Wang L, Tan F, Lu S, Lv X, Zaynab M, Cheng CL, Abubakar YS, Chen S, Chen W.
    J Proteomics; 2018 Mar 30; 176():1-12. PubMed ID: 29353021
    [Abstract] [Full Text] [Related]

  • 15. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.
    Ye J, Zhang Z, Long H, Zhang Z, Hong Y, Zhang X, You C, Liang W, Ma H, Lu P.
    Plant J; 2015 Nov 30; 84(3):527-44. PubMed ID: 26360816
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways.
    Kosako H, Nagano K.
    Expert Rev Proteomics; 2011 Feb 30; 8(1):81-94. PubMed ID: 21329429
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.