These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
744 related items for PubMed ID: 28363963
1. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae. Nijland JG, Shin HY, Boender LGM, de Waal PP, Klaassen P, Driessen AJM. Appl Environ Microbiol; 2017 Jun 01; 83(11):. PubMed ID: 28363963 [Abstract] [Full Text] [Related]
3. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae]. Wang C, Li H, Xu L, Shen Y, Hou J, Bao X. Sheng Wu Gong Cheng Xue Bao; 2018 Oct 25; 34(10):1543-1555. PubMed ID: 30394022 [Abstract] [Full Text] [Related]
4. Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain. Nijland JG, Li X, Shin HY, de Waal PP, Driessen AJM. FEMS Yeast Res; 2019 Dec 01; 19(8):. PubMed ID: 31782779 [Abstract] [Full Text] [Related]
5. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Sedlak M, Ho NW. Yeast; 2004 Jun 01; 21(8):671-84. PubMed ID: 15197732 [Abstract] [Full Text] [Related]
6. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A. Sci Rep; 2016 Jan 19; 6():19512. PubMed ID: 26781725 [Abstract] [Full Text] [Related]
7. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Nijland JG, Shin HY, de Jong RM, de Waal PP, Klaassen P, Driessen AJ. Biotechnol Biofuels; 2014 Jan 19; 7(1):168. PubMed ID: 25505932 [Abstract] [Full Text] [Related]
8. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae. Nijland JG, Shin HY, de Waal PP, Klaassen P, Driessen AJM. J Appl Microbiol; 2018 Feb 19; 124(2):503-510. PubMed ID: 29240974 [Abstract] [Full Text] [Related]
9. Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications. Nijland JG, Driessen AJM. Front Bioeng Biotechnol; 2019 Feb 19; 7():464. PubMed ID: 32064252 [Abstract] [Full Text] [Related]
10. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Li H, Schmitz O, Alper HS. Appl Microbiol Biotechnol; 2016 Dec 19; 100(23):10215-10223. PubMed ID: 27730335 [Abstract] [Full Text] [Related]
11. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Proc Natl Acad Sci U S A; 2014 Apr 08; 111(14):5159-64. PubMed ID: 24706835 [Abstract] [Full Text] [Related]
12. Identification of an important motif that controls the activity and specificity of sugar transporters. Wang M, Yu C, Zhao H. Biotechnol Bioeng; 2016 Jul 08; 113(7):1460-7. PubMed ID: 26724683 [Abstract] [Full Text] [Related]
13. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae. Li J, Xu J, Cai P, Wang B, Ma Y, Benz JP, Tian C. Appl Environ Microbiol; 2015 Jun 15; 81(12):4062-70. PubMed ID: 25841015 [Abstract] [Full Text] [Related]
14. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain. Nijland JG, Shin HY, Dore E, Rudinatha D, de Waal PP, Driessen AJM. FEMS Yeast Res; 2021 Jan 16; 21(1):. PubMed ID: 33232441 [Abstract] [Full Text] [Related]
15. Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae exhibiting a high pentose transport capacity. Rojas SAT, Schadeweg V, Kirchner F, Boles E, Oreb M. Sci Rep; 2021 Dec 22; 11(1):24404. PubMed ID: 34937866 [Abstract] [Full Text] [Related]
16. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ. Appl Environ Microbiol; 2003 Feb 22; 69(2):740-6. PubMed ID: 12570990 [Abstract] [Full Text] [Related]
17. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. Ghosh A, Zhao H, Price ND. PLoS One; 2011 Feb 22; 6(11):e27316. PubMed ID: 22076150 [Abstract] [Full Text] [Related]
18. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Wang C, Bao X, Li Y, Jiao C, Hou J, Zhang Q, Zhang W, Liu W, Shen Y. Metab Eng; 2015 Jul 22; 30():79-88. PubMed ID: 25944766 [Abstract] [Full Text] [Related]
19. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Xu JR, Zhao XQ, Liu CG, Bai FW. Protein Pept Lett; 2018 Jul 22; 25(2):202-207. PubMed ID: 29359658 [Abstract] [Full Text] [Related]