These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


744 related items for PubMed ID: 28363963

  • 21. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.
    Shin HY, Nijland JG, de Waal PP, de Jong RM, Klaassen P, Driessen AJ.
    Biotechnol Biofuels; 2015; 8():176. PubMed ID: 26535057
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene.
    Han JH, Park JY, Yoo KS, Kang HW, Choi GW, Chung BW, Min J.
    Arch Microbiol; 2011 May; 193(5):335-40. PubMed ID: 21279628
    [Abstract] [Full Text] [Related]

  • 24. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption.
    Reznicek O, Facey SJ, de Waal PP, Teunissen AW, de Bont JA, Nijland JG, Driessen AJ, Hauer B.
    J Appl Microbiol; 2015 Jul; 119(1):99-111. PubMed ID: 25882005
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption.
    Hector RE, Qureshi N, Hughes SR, Cotta MA.
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):675-84. PubMed ID: 18629494
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
    Jin YS, Laplaza JM, Jeffries TW.
    Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
    Feng Q, Liu ZL, Weber SA, Li S.
    PLoS One; 2018 Nov; 13(4):e0195633. PubMed ID: 29621349
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS.
    PLoS One; 2013 Nov; 8(2):e57048. PubMed ID: 23468911
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD, Rosa CA, Hector RE, Dien BS, Mertens JA, Ayub MAZ.
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.