These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Liu J, Zhou Y, Qi X, Chen J, Chen W, Qiu G, Wu Z, Wu N. Hum Genet; 2017 Jan; 136(1):1-12. PubMed ID: 27807677 [Abstract] [Full Text] [Related]
46. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Morgens DW, Deans RM, Li A, Bassik MC. Nat Biotechnol; 2016 Jun; 34(6):634-6. PubMed ID: 27159373 [Abstract] [Full Text] [Related]
47. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. Li R, Xia X, Wang X, Sun X, Dai Z, Huo D, Zheng H, Xiong H, He A, Wu X. PLoS Biol; 2020 Nov; 18(11):e3000749. PubMed ID: 33253175 [Abstract] [Full Text] [Related]
52. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Sachdeva M, Sachdeva N, Pal M, Gupta N, Khan IA, Majumdar M, Tiwari A. Cancer Gene Ther; 2015 Nov; 22(11):509-17. PubMed ID: 26494554 [Abstract] [Full Text] [Related]
53. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. Daer RM, Cutts JP, Brafman DA, Haynes KA. ACS Synth Biol; 2017 Mar 17; 6(3):428-438. PubMed ID: 27783893 [Abstract] [Full Text] [Related]
54. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Niu Y, Zhao X, Zhou J, Li Y, Huang Y, Cai B, Liu Y, Ding Q, Zhou S, Zhao J, Zhou G, Ma B, Huang X, Wang X, Chen Y. Reprod Fertil Dev; 2018 Jan 17; 30(2):307-312. PubMed ID: 28692815 [Abstract] [Full Text] [Related]
55. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. Potts MA, McDonald JA, Sutherland KD, Herold MJ. Eur J Immunol; 2020 Dec 17; 50(12):1871-1884. PubMed ID: 33202035 [Abstract] [Full Text] [Related]
56. CRISPR-based epigenome editing: mechanisms and applications. Fadul SM, Arshad A, Mehmood R. Epigenomics; 2023 Nov 17; 15(21):1137-1155. PubMed ID: 37990877 [Abstract] [Full Text] [Related]
57. In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR-Cas9 genome engineering. Wu Q, Ferry QRV, Baeumler TA, Michaels YS, Vitsios DM, Habib O, Arnold R, Jiang X, Maio S, Steinkraus BR, Tapia M, Piazza P, Xu N, Holländer GA, Milne TA, Kim JS, Enright AJ, Bassett AR, Fulga TA. Nat Commun; 2017 Dec 13; 8(1):2109. PubMed ID: 29235467 [Abstract] [Full Text] [Related]
58. Genome Editing in Retinal Diseases using CRISPR Technology. Yiu G. Ophthalmol Retina; 2018 Jan 13; 2(1):1-3. PubMed ID: 31047294 [No Abstract] [Full Text] [Related]
59. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. Gratacap RL, Regan T, Dehler CE, Martin SAM, Boudinot P, Collet B, Houston RD. BMC Biotechnol; 2020 Jun 23; 20(1):35. PubMed ID: 32576161 [Abstract] [Full Text] [Related]
60. Could CRISPR be the solution for gene editing's Gordian knot? Fang H, Wang W. Cell Biol Toxicol; 2016 Dec 23; 32(6):465-467. PubMed ID: 27614448 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]