These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 28371930

  • 1. In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death.
    Ghosh I, Mukherjee A, Mukherjee A.
    Mutagenesis; 2017 May 01; 32(3):371-387. PubMed ID: 28371930
    [Abstract] [Full Text] [Related]

  • 2. Nanoscale zerovalent iron particles induce differential cytotoxicity, genotoxicity, oxidative stress and hemolytic responses in human lymphocytes and erythrocytes in vitro.
    Ghosh I, Mukherjee A, Mukherjee A.
    J Appl Toxicol; 2019 Dec 01; 39(12):1623-1639. PubMed ID: 31355497
    [Abstract] [Full Text] [Related]

  • 3. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.
    Achary VM, Jena S, Panda KK, Panda BB.
    Ecotoxicol Environ Saf; 2008 Jun 01; 70(2):300-10. PubMed ID: 18068230
    [Abstract] [Full Text] [Related]

  • 4. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.
    Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A.
    Mutat Res; 2015 Apr 01; 774():49-58. PubMed ID: 25829105
    [Abstract] [Full Text] [Related]

  • 5. Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates.
    Murali Achary VM, Panda BB.
    Mutagenesis; 2010 Mar 01; 25(2):201-9. PubMed ID: 19955331
    [Abstract] [Full Text] [Related]

  • 6. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.
    Chen PJ, Wu WL, Wu KC.
    Water Res; 2013 Aug 01; 47(12):3899-909. PubMed ID: 23548565
    [Abstract] [Full Text] [Related]

  • 7. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH, Kung TA, Chen PJ.
    Environ Pollut; 2019 Sep 01; 252(Pt B):1920-1932. PubMed ID: 31227347
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system.
    Souza IR, Silva LR, Fernandes LSP, Salgado LD, Silva de Assis HC, Firak DS, Bach L, Santos-Filho R, Voigt CL, Barros AC, Peralta-Zamora P, Mattoso N, Franco CRC, Soares Medeiros LC, Marcon BH, Cestari MM, Sant'Anna-Santos BF, Leme DM.
    Environ Pollut; 2020 Feb 01; 257():113551. PubMed ID: 31801672
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Assessing phytotoxicity and cyto-genotoxicity of two insecticides using a battery of in-vitro biological assays.
    Shahid M, Zeyad MT, Syed A, Bahkali AH, Pichtel J, Verma M.
    Mutat Res Genet Toxicol Environ Mutagen; 2023 Oct 01; 891():503688. PubMed ID: 37770145
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H, Pangging M, Jang MH, Hwang YS, Chang YS.
    Ecotoxicol Environ Saf; 2018 Nov 15; 163():436-443. PubMed ID: 30075446
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.