These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin. Lee IL, Li PS, Yu WL, Shen HH. Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844 [Abstract] [Full Text] [Related]
7. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria. Ruan L, Li H, Zhang J, Zhou M, Huang H, Dong J, Li J, Zhao F, Wu Z, Chen J, Chai Z, Hu Y. Talanta; 2023 Jan 01; 251():123770. PubMed ID: 35961081 [Abstract] [Full Text] [Related]
10. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities. Portilla Y, Mulens-Arias V, Daviu N, Paradela A, Pérez-Yagüe S, Barber DF. ACS Appl Mater Interfaces; 2023 Aug 02; 15(30):35906-35926. PubMed ID: 37478159 [Abstract] [Full Text] [Related]
11. Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications. Shelat R, Chandra S, Khanna A. Int J Biol Macromol; 2018 Apr 15; 110():357-365. PubMed ID: 28939520 [Abstract] [Full Text] [Related]
12. Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas. Dyawanapelly S, Jagtap DD, Dandekar P, Ghosh G, Jain R. Colloids Surf B Biointerfaces; 2017 Jun 01; 154():408-420. PubMed ID: 28388527 [Abstract] [Full Text] [Related]
13. DMSA-coated IONPs trigger oxidative stress, mitochondrial metabolic reprograming and changes in mitochondrial disposition, hindering cell cycle progression of cancer cells. Daviu N, Portilla Y, Gómez de Cedrón M, Ramírez de Molina A, Barber DF. Biomaterials; 2024 Jan 01; 304():122409. PubMed ID: 38052135 [Abstract] [Full Text] [Related]
14. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways. Kim E, Kim JM, Kim L, Choi SJ, Park IS, Han JY, Chu YC, Choi ES, Na K, Hong SS. Int J Nanomedicine; 2016 Jan 01; 11():4595-4607. PubMed ID: 27695320 [Abstract] [Full Text] [Related]
15. Accumulation of iron oxide nanoparticles by cultured primary neurons. Petters C, Dringen R. Neurochem Int; 2015 Feb 01; 81():1-9. PubMed ID: 25510641 [Abstract] [Full Text] [Related]
16. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control. Shen WB, Vaccaro DE, Fishman PS, Groman EV, Yarowsky P. Contrast Media Mol Imaging; 2016 May 01; 11(3):222-8. PubMed ID: 26809657 [Abstract] [Full Text] [Related]
17. Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages. Liu L, Sha R, Yang L, Zhao X, Zhu Y, Gao J, Zhang Y, Wen LP. ACS Appl Mater Interfaces; 2018 Dec 05; 10(48):41197-41206. PubMed ID: 30398340 [Abstract] [Full Text] [Related]
18. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW. Int J Nanomedicine; 2013 Dec 05; 8():961-70. PubMed ID: 23494517 [Abstract] [Full Text] [Related]
20. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Rojas JM, Gavilán H, Del Dedo V, Lorente-Sorolla E, Sanz-Ortega L, da Silva GB, Costo R, Perez-Yagüe S, Talelli M, Marciello M, Morales MP, Barber DF, Gutiérrez L. Acta Biomater; 2017 Aug 05; 58():181-195. PubMed ID: 28536061 [Abstract] [Full Text] [Related] Page: [Next] [New Search]