These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 28389581

  • 1. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis.
    Jha KN, Tripurani SK, Johnson GR.
    J Cell Sci; 2017 May 15; 130(10):1835-1844. PubMed ID: 28389581
    [Abstract] [Full Text] [Related]

  • 2. Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster.
    Awe S, Renkawitz-Pohl R.
    Syst Biol Reprod Med; 2010 Feb 15; 56(1):44-61. PubMed ID: 20170286
    [Abstract] [Full Text] [Related]

  • 3. PHF7 Modulates BRDT Stability and Histone-to-Protamine Exchange during Spermiogenesis.
    Kim CR, Noda T, Kim H, Kim G, Park S, Na Y, Oura S, Shimada K, Bang I, Ahn JY, Kim YR, Oh SK, Choi HJ, Kim JS, Jung I, Lee H, Okada Y, Ikawa M, Baek SH.
    Cell Rep; 2020 Jul 28; 32(4):107950. PubMed ID: 32726616
    [Abstract] [Full Text] [Related]

  • 4. Immunoelectron microscopical distribution of histones H2B and H3 and protamines during human spermiogenesis.
    Prigent Y, Muller S, Dadoune JP.
    Mol Hum Reprod; 1996 Dec 28; 2(12):929-35. PubMed ID: 9237236
    [Abstract] [Full Text] [Related]

  • 5. Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus.
    Jayaramaiah Raja S, Renkawitz-Pohl R.
    Mol Cell Biol; 2005 Jul 28; 25(14):6165-77. PubMed ID: 15988027
    [Abstract] [Full Text] [Related]

  • 6. High-pressure freezing of spermiogenic nuclei supports a dynamic chromatin model for the histone-to-protamine transition.
    Martens G, Humphrey EC, Harrison LG, Silva-Moreno B, Ausió J, Kasinsky HE.
    J Cell Biochem; 2009 Dec 15; 108(6):1399-409. PubMed ID: 19830786
    [Abstract] [Full Text] [Related]

  • 7. Chromatin dynamics during spermiogenesis.
    Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R.
    Biochim Biophys Acta; 2014 Mar 15; 1839(3):155-68. PubMed ID: 24091090
    [Abstract] [Full Text] [Related]

  • 8. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.
    Chiva M, Saperas N, Ribes E.
    Tissue Cell; 2011 Dec 15; 43(6):367-76. PubMed ID: 21937068
    [Abstract] [Full Text] [Related]

  • 9. Ultrastructural immunolocalisation of histones (H2B, H3, H4), transition protein (TP1) and protamine in rabbit spermatids and spermatozoa nuclei. Relation to condensation of the chromatin.
    Courtens JL, Kistler WS, Plöen L.
    Reprod Nutr Dev; 1995 Dec 15; 35(5):569-82. PubMed ID: 8526985
    [Abstract] [Full Text] [Related]

  • 10. Sperm chromatin protamination: an endocrine perspective.
    Gill-Sharma MK, Choudhuri J, D'Souza S.
    Protein Pept Lett; 2011 Aug 15; 18(8):786-801. PubMed ID: 21443490
    [Abstract] [Full Text] [Related]

  • 11. The dynamics and regulation of chromatin remodeling during spermiogenesis.
    Hao SL, Ni FD, Yang WX.
    Gene; 2019 Jul 20; 706():201-210. PubMed ID: 31085275
    [Abstract] [Full Text] [Related]

  • 12. H3K79 methylation directly precedes the histone-to-protamine transition in mammalian spermatids and is sensitive to bacterial infections.
    Dottermusch-Heidel C, Klaus ES, Gonzalez NH, Bhushan S, Meinhardt A, Bergmann M, Renkawitz-Pohl R, Rathke C, Steger K.
    Andrology; 2014 Sep 20; 2(5):655-65. PubMed ID: 25079683
    [Abstract] [Full Text] [Related]

  • 13. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement.
    Malla AB, Rainsford SR, Smith ZD, Lesch BJ.
    Development; 2023 May 01; 150(9):. PubMed ID: 37082969
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Dynamic aspects of spermiogenic chromatin condensation patterning by phase separation during the histone-to-protamine transition in charalean algae and relation to bryophytes.
    Kasinsky HE, Ellis S, Martens G, Ausió J.
    Tissue Cell; 2014 Dec 01; 46(6):415-32. PubMed ID: 25262620
    [Abstract] [Full Text] [Related]

  • 18. Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during Drosophila spermiogenesis.
    Rathke C, Barckmann B, Burkhard S, Jayaramaiah-Raja S, Roote J, Renkawitz-Pohl R.
    Eur J Cell Biol; 2010 Apr 01; 89(4):326-38. PubMed ID: 20138392
    [Abstract] [Full Text] [Related]

  • 19. Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster.
    Hundertmark T, Gärtner SMK, Rathke C, Renkawitz-Pohl R.
    PLoS One; 2018 Apr 01; 13(9):e0203622. PubMed ID: 30192860
    [Abstract] [Full Text] [Related]

  • 20. HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility.
    Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K, Okabe M, Nishimune Y.
    Mol Cell Biol; 2005 Aug 01; 25(16):7107-19. PubMed ID: 16055721
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.