These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
462 related items for PubMed ID: 28389698
1. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Venkatachalam AB, Parmar MB, Wright JM. Mol Genet Genomics; 2017 Aug; 292(4):699-727. PubMed ID: 28389698 [Abstract] [Full Text] [Related]
2. Subfunctionalization of peroxisome proliferator response elements accounts for retention of duplicated fabp1 genes in zebrafish. Laprairie RB, Denovan-Wright EM, Wright JM. BMC Evol Biol; 2016 Jul 16; 16(1):147. PubMed ID: 27421266 [Abstract] [Full Text] [Related]
3. Divergent evolution of cis-acting peroxisome proliferator-activated receptor elements that differentially control the tandemly duplicated fatty acid-binding protein genes, fabp1b.1 and fabp1b.2, in zebrafish. Laprairie RB, Denovan-Wright EM, Wright JM. Genome; 2016 Jun 16; 59(6):403-12. PubMed ID: 27228313 [Abstract] [Full Text] [Related]
4. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Venkatachalam AB, Lall SP, Denovan-Wright EM, Wright JM. BMC Evol Biol; 2012 Jul 09; 12():112. PubMed ID: 22776158 [Abstract] [Full Text] [Related]
5. Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus). Venkatachalam AB, Fontenot Q, Farrara A, Wright JM. Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar 09; 25():19-25. PubMed ID: 29126085 [Abstract] [Full Text] [Related]
6. Differential regulation of the duplicated fabp7, fabp10 and fabp11 genes of zebrafish by peroxisome proliferator activated receptors. Laprairie RB, Denovan-Wright EM, Wright JM. Comp Biochem Physiol B Biochem Mol Biol; 2017 Nov 09; 213():81-90. PubMed ID: 28844908 [Abstract] [Full Text] [Related]
7. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes. Parmar MB, Shams R, Wright JM. Mar Genomics; 2013 Sep 09; 11():1-10. PubMed ID: 23632098 [Abstract] [Full Text] [Related]
8. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Parmar MB, Wright JM. Genome; 2013 Nov 09; 56(11):691-701. PubMed ID: 24299108 [Abstract] [Full Text] [Related]
9. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. Lu J, Peatman E, Tang H, Lewis J, Liu Z. BMC Genomics; 2012 Jun 15; 13():246. PubMed ID: 22702965 [Abstract] [Full Text] [Related]
10. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. Karanth S, Lall SP, Denovan-Wright EM, Wright JM. BMC Evol Biol; 2009 Sep 02; 9():219. PubMed ID: 19725974 [Abstract] [Full Text] [Related]
11. Fatty acid-binding protein (fabp) genes of spotted green pufferfish (Tetraodon nigroviridis): comparative genomics and spatial transcriptional regulation. Thirumaran A, Wright JM. Genome; 2014 May 02; 57(5):289-301. PubMed ID: 25153522 [Abstract] [Full Text] [Related]
12. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration. Braasch I, Salzburger W, Meyer A. Mol Biol Evol; 2006 Jun 02; 23(6):1192-202. PubMed ID: 16547150 [Abstract] [Full Text] [Related]
13. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish. Guo B. J Mol Evol; 2017 Jun 02; 84(5-6):253-258. PubMed ID: 28492966 [Abstract] [Full Text] [Related]
14. Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Venkatachalam AB, Sawler DL, Wright JM. Gene; 2013 May 10; 520(1):14-21. PubMed ID: 23466978 [Abstract] [Full Text] [Related]
15. Comparative evolutionary genomics of medaka and three-spined stickleback fabp2a and fabp2b genes with fabp2 of zebrafish. Parmar MB, Wright JM. Genome; 2013 Jan 10; 56(1):27-37. PubMed ID: 23379336 [Abstract] [Full Text] [Related]
16. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y. BMC Evol Biol; 2008 Dec 18; 8():336. PubMed ID: 19094205 [Abstract] [Full Text] [Related]
17. Comparative genomics and evolutionary diversification of the duplicated fabp6a and fabp6b genes in medaka and three-spined stickleback. Parmar MB, Venkatachalam AB, Wright JM. Comp Biochem Physiol Part D Genomics Proteomics; 2012 Dec 18; 7(4):311-21. PubMed ID: 23123309 [Abstract] [Full Text] [Related]
18. The evolutionary relationship of the transcriptionally active fabp11a (intronless) and fabp11b genes of medaka with fabp11 genes of other teleost fishes. Parmar MB, Venkatachalam AB, Wright JM. FEBS J; 2012 Jul 18; 279(13):2310-21. PubMed ID: 22520026 [Abstract] [Full Text] [Related]
19. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. Voldoire E, Brunet F, Naville M, Volff JN, Galiana D. PLoS One; 2017 Jul 18; 12(7):e0180936. PubMed ID: 28738066 [Abstract] [Full Text] [Related]
20. Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes. de Souza FS, Bumaschny VF, Low MJ, Rubinstein M. Mol Biol Evol; 2005 Dec 18; 22(12):2417-27. PubMed ID: 16093565 [Abstract] [Full Text] [Related] Page: [Next] [New Search]