These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


367 related items for PubMed ID: 28399904

  • 1. Separation of photoreceptor cell compartments in mouse retina for protein analysis.
    Rose K, Walston ST, Chen J.
    Mol Neurodegener; 2017 Apr 11; 12(1):28. PubMed ID: 28399904
    [Abstract] [Full Text] [Related]

  • 2. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV, Sezate SS, Cao W, McGinnis JF.
    Mol Vis; 2004 Sep 15; 10():672-81. PubMed ID: 15467522
    [Abstract] [Full Text] [Related]

  • 3. Cytoskeleton participation in subcellular trafficking of signal transduction proteins in rod photoreceptor cells.
    McGinnis JF, Matsumoto B, Whelan JP, Cao W.
    J Neurosci Res; 2002 Feb 01; 67(3):290-7. PubMed ID: 11813233
    [Abstract] [Full Text] [Related]

  • 4. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B, Goldmann T, Giessl A, Wolfrum U.
    Cell Motil Cytoskeleton; 2008 Oct 01; 65(10):785-800. PubMed ID: 18623243
    [Abstract] [Full Text] [Related]

  • 5. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H, Huang W, Zhang H, Zhu X, Craft CM, Baehr W, Chen CK.
    Mol Vis; 2003 Jun 09; 9():231-7. PubMed ID: 12802257
    [Abstract] [Full Text] [Related]

  • 6. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo.
    Berkowitz BA, Gorgis J, Patel A, Baameur F, Gurevich VV, Craft CM, Kefalov VJ, Roberts R.
    FASEB J; 2015 Feb 09; 29(2):554-64. PubMed ID: 25351983
    [Abstract] [Full Text] [Related]

  • 7. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X, Li A, Brown B, Weiss ER, Osawa S, Craft CM.
    Mol Vis; 2002 Dec 11; 8():462-71. PubMed ID: 12486395
    [Abstract] [Full Text] [Related]

  • 8. Two Peeling Methods for the Isolation of Photoreceptor Cell Compartments in the Mouse Retina for Protein Analysis.
    Rose K, Lokappa S, Chen J.
    J Vis Exp; 2021 Dec 07; (178):. PubMed ID: 34958075
    [Abstract] [Full Text] [Related]

  • 9. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation.
    Rajala A, Daly RJ, Tanito M, Allen DT, Holt LJ, Lobanova ES, Arshavsky VY, Rajala RV.
    Biochemistry; 2009 Jun 23; 48(24):5563-72. PubMed ID: 19438210
    [Abstract] [Full Text] [Related]

  • 10. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells.
    Coleman JE, Semple-Rowland SL.
    Invest Ophthalmol Vis Sci; 2005 Jan 23; 46(1):12-6. PubMed ID: 15623748
    [Abstract] [Full Text] [Related]

  • 11. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin.
    Ziccardi L, Vijayasarathy C, Bush RA, Sieving PA.
    J Neurosci; 2012 Sep 19; 32(38):13010-21. PubMed ID: 22993419
    [Abstract] [Full Text] [Related]

  • 12. Photoreceptor vitality in organotypic cultures of mature vertebrate retinas validated by light-dependent molecular movements.
    Reidel B, Orisme W, Goldmann T, Smith WC, Wolfrum U.
    Vision Res; 2006 Dec 19; 46(27):4464-71. PubMed ID: 16979692
    [Abstract] [Full Text] [Related]

  • 13. Light-dependent compartmentalization of transducin in rod photoreceptors.
    Artemyev NO.
    Mol Neurobiol; 2008 Feb 19; 37(1):44-51. PubMed ID: 18425604
    [Abstract] [Full Text] [Related]

  • 14. Arrestin mRNA expression, biosynthesis, and localization in degenerating photoreceptors of mutant rds mice retinas.
    Nir I, Agarwal N.
    J Comp Neurol; 1991 Jun 01; 308(1):1-10. PubMed ID: 1874976
    [Abstract] [Full Text] [Related]

  • 15. Speeding rod recovery improves temporal resolution in the retina.
    Fortenbach CR, Kessler C, Peinado Allina G, Burns ME.
    Vision Res; 2015 May 01; 110(Pt A):57-67. PubMed ID: 25748270
    [Abstract] [Full Text] [Related]

  • 16. Light-induced changes in S-antigen (arrestin) localization in retinal photoreceptors: differences between rods and cones and defective process in RCS rat retinal dystrophy.
    Mirshahi M, Thillaye B, Tarraf M, de Kozak Y, Faure JP.
    Eur J Cell Biol; 1994 Feb 01; 63(1):61-7. PubMed ID: 8005106
    [Abstract] [Full Text] [Related]

  • 17. RGS9, a GTPase accelerator for phototransduction.
    He W, Cowan CW, Wensel TG.
    Neuron; 1998 Jan 01; 20(1):95-102. PubMed ID: 9459445
    [Abstract] [Full Text] [Related]

  • 18. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse.
    Sokolov M, Strissel KJ, Leskov IB, Michaud NA, Govardovskii VI, Arshavsky VY.
    J Biol Chem; 2004 Apr 30; 279(18):19149-56. PubMed ID: 14973130
    [Abstract] [Full Text] [Related]

  • 19. Light-dependent subcellular movement of photoreceptor proteins.
    Whelan JP, McGinnis JF.
    J Neurosci Res; 1988 Apr 30; 20(2):263-70. PubMed ID: 3172281
    [Abstract] [Full Text] [Related]

  • 20. Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin.
    Seiler MJ, Aramant RB, Ball SL.
    Vision Res; 1999 Jul 30; 39(15):2589-96. PubMed ID: 10396627
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.