These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 2839991

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. NMN transport by snake renal tubules: choline effects, countertransport, H+-NMN exchange.
    Dantzler WH, Brokl OH.
    Am J Physiol; 1987 Oct; 253(4 Pt 2):F656-63. PubMed ID: 2959158
    [Abstract] [Full Text] [Related]

  • 3. Brush-border TEA transport in intact proximal tubules and isolated membrane vesicles.
    Dantzler WH, Brokl OH, Wright SH.
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F290-7. PubMed ID: 2916661
    [Abstract] [Full Text] [Related]

  • 4. Tetraethylammonium transport by isolated perfused snake renal tubules.
    Hawk CT, Dantzler WH.
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F476-87. PubMed ID: 6232857
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Transport of PAH, urate, TEA, and fluid by isolated perfused and nonperfused avian renal proximal tubules.
    Brokl OH, Braun EJ, Dantzler WH.
    Am J Physiol; 1994 Apr; 266(4 Pt 2):R1085-94. PubMed ID: 8184950
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Characterization of organic cation transport by avian renal brush-border membrane vesicles.
    Villalobos AR, Braun EJ.
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1050-9. PubMed ID: 7503291
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Glucose transport in isolated perfused proximal tubules of snake kidney.
    Barfuss DW, Dantzler WH.
    Am J Physiol; 1976 Dec; 231(6):1716-28. PubMed ID: 990110
    [Abstract] [Full Text] [Related]

  • 13. Specificity of basolateral organic cation transport in snake renal proximal tubules.
    Kim YK, Dantzler WH.
    Am J Physiol; 1996 May; 270(5 Pt 2):R1025-30. PubMed ID: 8928901
    [Abstract] [Full Text] [Related]

  • 14. Organic cation transport by rat hepatocyte basolateral membrane vesicles.
    McKinney TD, Hosford MA.
    Am J Physiol; 1992 Dec; 263(6 Pt 1):G939-46. PubMed ID: 1335694
    [Abstract] [Full Text] [Related]

  • 15. Transport of organic cations by a renal epithelial cell line (OK).
    Yuan G, Ott RJ, Salgado C, Giacomini KM.
    J Biol Chem; 1991 May 15; 266(14):8978-86. PubMed ID: 1827442
    [Abstract] [Full Text] [Related]

  • 16. A choline transporter in renal brush-border membrane vesicles: energetics and structural specificity.
    Wright SH, Wunz TM, Wunz TP.
    J Membr Biol; 1992 Feb 15; 126(1):51-65. PubMed ID: 1593612
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Low Na+ effects on PAH transport and permeabilities in isolated snake renal tubules.
    Dantzler WH, Bentley SK.
    Am J Physiol; 1976 Feb 15; 230(2):256-62. PubMed ID: 1259001
    [Abstract] [Full Text] [Related]

  • 19. Verapamil and quinidine effects on PAH transport by isolated perfused renal tubules.
    Dantzler WH, Brokl OH.
    Am J Physiol; 1984 Feb 15; 246(2 Pt 2):F188-200. PubMed ID: 6696120
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.