These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 28409381

  • 1. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris.
    Wang F, Song X, Dong X, Zhang J, Dong C.
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4645-4657. PubMed ID: 28409381
    [Abstract] [Full Text] [Related]

  • 2. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris.
    Zhang J, Wang F, Yang Y, Wang Y, Dong C.
    Environ Microbiol; 2020 Jan; 22(1):466-482. PubMed ID: 31742850
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.
    Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget FY, Bowler C.
    Plant Cell Environ; 2010 Oct; 33(10):1614-26. PubMed ID: 20444223
    [Abstract] [Full Text] [Related]

  • 6. The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase.
    Navarro E, Niemann N, Kock D, Dadaeva T, Gutiérrez G, Engelsdorf T, Kiontke S, Corrochano LM, Batschauer A, Garre V.
    Curr Biol; 2020 Nov 16; 30(22):4483-4490.e4. PubMed ID: 32946746
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes.
    Mei Q, Dvornyk V.
    PLoS One; 2015 Nov 16; 10(9):e0135940. PubMed ID: 26352435
    [Abstract] [Full Text] [Related]

  • 13. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea.
    Cohrs KC, Schumacher J.
    Appl Environ Microbiol; 2017 Sep 01; 83(17):. PubMed ID: 28667107
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Purification and characterization of five members of photolyase/cryptochrome family from Cyanidioschyzon merolae.
    Asimgil H, Kavakli IH.
    Plant Sci; 2012 Apr 01; 185-186():190-8. PubMed ID: 22325881
    [Abstract] [Full Text] [Related]

  • 18. Influence of Strain Preservation Methods on Fruiting Body Growth and Metabolite Production by the Medicinal Mushroom Cordyceps militaris (Ascomycetes).
    Liu Q, Wang F, Liu K, Dong C.
    Int J Med Mushrooms; 2018 Apr 01; 20(10):1003-1011. PubMed ID: 30806271
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A Review of Spectroscopic and Biophysical-Chemical Studies of the Complex of Cyclobutane Pyrimidine Dimer Photolyase and Cryptochrome DASH with Substrate DNA.
    Schelvis JP, Gindt YM.
    Photochem Photobiol; 2017 Jan 01; 93(1):26-36. PubMed ID: 27891613
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.