These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 28415476
1. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. Beladi F, Saber-Samandari S, Saber-Samandari S. Mater Sci Eng C Mater Biol Appl; 2017 Jun 01; 75():385-392. PubMed ID: 28415476 [Abstract] [Full Text] [Related]
2. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S, Yekta H, Ahmadi S, Alamara K. Int J Biol Macromol; 2018 Jan 01; 106():481-488. PubMed ID: 28797809 [Abstract] [Full Text] [Related]
3. Development of nanocomposite scaffolds based on TiO2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility. Abd-Khorsand S, Saber-Samandari S, Saber-Samandari S. Int J Biol Macromol; 2017 Aug 01; 101():51-58. PubMed ID: 28315764 [Abstract] [Full Text] [Related]
4. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. Dumont VC, Mansur HS, Mansur AA, Carvalho SM, Capanema NS, Barrioni BR. Int J Biol Macromol; 2016 Dec 01; 93(Pt B):1465-1478. PubMed ID: 27086294 [Abstract] [Full Text] [Related]
5. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium. Asadian-Ardakani V, Saber-Samandari S, Saber-Samandari S. J Biomed Mater Res A; 2016 Dec 01; 104(12):2992-3003. PubMed ID: 27449255 [Abstract] [Full Text] [Related]
6. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A. Int J Biol Macromol; 2016 May 01; 86():434-42. PubMed ID: 26836617 [Abstract] [Full Text] [Related]
7. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Eftekhari S, El Sawi I, Bagheri ZS, Turcotte G, Bougherara H. Mater Sci Eng C Mater Biol Appl; 2014 Jun 01; 39():120-5. PubMed ID: 24863207 [Abstract] [Full Text] [Related]
8. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Lowe B, Venkatesan J, Anil S, Shim MS, Kim SK. Int J Biol Macromol; 2016 Dec 01; 93(Pt B):1479-1487. PubMed ID: 26921504 [Abstract] [Full Text] [Related]
9. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite. Palaveniene A, Tamburaci S, Kimna C, Glambaite K, Baniukaitiene O, Tihminlioğlu F, Liesiene J. J Biomater Appl; 2019 Jan 01; 33(6):876-890. PubMed ID: 30451067 [Abstract] [Full Text] [Related]
10. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL. J Biomed Mater Res A; 2009 Oct 01; 91(1):175-86. PubMed ID: 18780358 [Abstract] [Full Text] [Related]
11. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean DD, Sylvia VL, Elgendy H, Ong J, Hollinger JO. Biofabrication; 2012 Jun 01; 4(2):025003. PubMed ID: 22427485 [Abstract] [Full Text] [Related]
12. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. Chiu CK, Lee DJ, Chen H, Chow LC, Ko CC. J Mater Sci Mater Med; 2015 Feb 01; 26(2):92. PubMed ID: 25649517 [Abstract] [Full Text] [Related]
13. Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Shahbazarab Z, Teimouri A, Chermahini AN, Azadi M. Int J Biol Macromol; 2018 Mar 01; 108():1017-1027. PubMed ID: 29122713 [Abstract] [Full Text] [Related]
14. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Shaheen TI, Montaser AS, Li S. Int J Biol Macromol; 2019 Jan 01; 121():814-821. PubMed ID: 30342123 [Abstract] [Full Text] [Related]
15. Cellulose acetate scaffold coated with a hydroxyapatite/graphene oxide nanocomposite for application in tissue engineering. Dos Santos Menezes L, Navarro da Rocha D, Nonato RC, Costa AR, Morales AR, Correr-Sobrinho L, Correr AB, Neves JG. Proc Inst Mech Eng H; 2024 Jul 01; 238(7):793-802. PubMed ID: 38902971 [Abstract] [Full Text] [Related]
16. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation. Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR. J Biomater Sci Polym Ed; 2012 Jul 01; 23(18):2353-68. PubMed ID: 22244095 [Abstract] [Full Text] [Related]
17. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Cholas R, Kunjalukkal Padmanabhan S, Gervaso F, Udayan G, Monaco G, Sannino A, Licciulli A. Mater Sci Eng C Mater Biol Appl; 2016 Jun 01; 63():499-505. PubMed ID: 27040244 [Abstract] [Full Text] [Related]
18. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM. J Biomater Sci Polym Ed; 2014 Jun 01; 25(16):1856-74. PubMed ID: 25178801 [Abstract] [Full Text] [Related]
19. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products. Arslan YE, Sezgin Arslan T, Derkus B, Emregul E, Emregul KC. Colloids Surf B Biointerfaces; 2017 Jun 01; 154():160-170. PubMed ID: 28334693 [Abstract] [Full Text] [Related]
20. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration. Castilla Bolaños MA, Buttigieg J, Briceño Triana JC. Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():519-525. PubMed ID: 28024616 [Abstract] [Full Text] [Related] Page: [Next] [New Search]