These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. Alipanah L, Rohloff J, Winge P, Bones AM, Brembu T. J Exp Bot; 2015 Oct; 66(20):6281-96. PubMed ID: 26163699 [Abstract] [Full Text] [Related]
3. Profiling of the Early Nitrogen Stress Response in the Diatom Phaeodactylum tricornutum Reveals a Novel Family of RING-Domain Transcription Factors. Matthijs M, Fabris M, Broos S, Vyverman W, Goossens A. Plant Physiol; 2016 Jan; 170(1):489-98. PubMed ID: 26582725 [Abstract] [Full Text] [Related]
4. Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP. Appl Microbiol Biotechnol; 2013 Apr; 97(8):3625-42. PubMed ID: 23463245 [Abstract] [Full Text] [Related]
11. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Levitan O, Dinamarca J, Zelzion E, Lun DS, Guerra LT, Kim MK, Kim J, Van Mooy BA, Bhattacharya D, Falkowski PG. Proc Natl Acad Sci U S A; 2015 Jan 13; 112(2):412-7. PubMed ID: 25548193 [Abstract] [Full Text] [Related]
12. CO(2)-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, Matsuda Y. Plant Physiol; 2012 Jan 13; 158(1):499-513. PubMed ID: 22095044 [Abstract] [Full Text] [Related]
14. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. Alipanah L, Winge P, Rohloff J, Najafi J, Brembu T, Bones AM. PLoS One; 2018 Jan 13; 13(2):e0193335. PubMed ID: 29474408 [Abstract] [Full Text] [Related]
15. Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation. Smith SR, Gillard JT, Kustka AB, McCrow JP, Badger JH, Zheng H, New AM, Dupont CL, Obata T, Fernie AR, Allen AE. PLoS Genet; 2016 Dec 13; 12(12):e1006490. PubMed ID: 27973599 [Abstract] [Full Text] [Related]
17. [Separation of the up-regulated genes under nitrogen starvation from Phaeodactylum tricornutum by suppression subtractive hybridization technology]. Tang JX, Chen Z, Hu HH. Yi Chuan; 2009 Aug 13; 31(8):865-70. PubMed ID: 19689950 [Abstract] [Full Text] [Related]
18. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. Grypioti E, Richard H, Kryovrysanaki N, Jaubert M, Falciatore A, Verret F, Kalantidis K. New Phytol; 2024 Jan 13; 241(2):811-826. PubMed ID: 38044751 [Abstract] [Full Text] [Related]
20. MYB gene family in the diatom Phaeodactylum tricornutum revealing their potential functions in the adaption to nitrogen deficiency and diurnal cycle. Wang W, Fang H, Aslam M, Du H, Chen J, Luo H, Chen W, Liu X. J Phycol; 2022 Feb 13; 58(1):121-132. PubMed ID: 34634129 [Abstract] [Full Text] [Related] Page: [Next] [New Search]