These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 28421987

  • 1. A New Dispersive Liquid-Liquid Microextraction Method for Preconcentration and Determination of Aluminum, Iron, Copper, and Lead in Real Water Samples by HPLC.
    Alpdoğan G, Zor ŞD.
    J AOAC Int; 2017 Sep 01; 100(5):1524-1530. PubMed ID: 28421987
    [Abstract] [Full Text] [Related]

  • 2. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.
    Citak D, Tuzen M.
    J AOAC Int; 2013 Sep 01; 96(6):1435-9. PubMed ID: 24645526
    [Abstract] [Full Text] [Related]

  • 3. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.
    Anthemidis AN, Ioannou KI.
    Talanta; 2009 Jun 30; 79(1):86-91. PubMed ID: 19376348
    [Abstract] [Full Text] [Related]

  • 4. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M, Tavakoli H, Torab-Mostaedi M, Hosseini G, Hemmati A.
    Talanta; 2014 Jun 30; 123():25-31. PubMed ID: 24725860
    [Abstract] [Full Text] [Related]

  • 5. Supramolecular-Based Ultrasonic-Assisted Dispersion Solidification Liquid-Liquid Microextraction of Copper and Cobalt Prior to Their Flame Atomic Absorption Spectrometry Determination.
    Shokrollahi A, Ebrahimi F.
    J AOAC Int; 2017 Nov 01; 100(6):1861-1868. PubMed ID: 28807089
    [Abstract] [Full Text] [Related]

  • 6. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E, Zgoła-Grześkowiak A.
    Talanta; 2013 Oct 15; 115():178-83. PubMed ID: 24054576
    [Abstract] [Full Text] [Related]

  • 7. Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC-UV.
    Khodadoust S, Ghaedi M.
    J Sep Sci; 2013 Jun 15; 36(11):1734-42. PubMed ID: 23625524
    [Abstract] [Full Text] [Related]

  • 8. Simple, rapid, and sensitive determination of beta-blockers in environmental water using dispersive liquid-liquid microextraction followed by liquid chromatography with fluorescence detection.
    Parrilla Vázquez Mdel M, Parrilla Vázquez P, Martínez Galera M, Molina Sánchez L.
    J Sep Sci; 2012 Sep 15; 35(17):2184-92. PubMed ID: 22887596
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous spectrophotometric determination of Fe(III) and Al(III) using orthogonal signal correction-partial least squares calibration method after solidified floating organic drop microextraction.
    Rohani Moghadam M, Haji Shabani AM, Dadfarnia S.
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():929-34. PubMed ID: 25168229
    [Abstract] [Full Text] [Related]

  • 10. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.
    Alothman ZA, Habila M, Yilmaz E, Soylak M.
    J AOAC Int; 2013 Jan 25; 96(6):1425-9. PubMed ID: 24645524
    [Abstract] [Full Text] [Related]

  • 11. Enrichment of copper as 1-(2-pyridylazo)-2-naphthol complex by the combination of dispersive liquid-liquid microextraction/flame atomic absorption spectrometry.
    Kandhro GA, Soylak M, Kazi TG, Yilmaz E.
    J AOAC Int; 2014 Jan 25; 97(1):205-10. PubMed ID: 24672879
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with UV-Vis Spectrophotometry.
    Nejad MG, Faraji H, Moghimi A.
    Bull Environ Contam Toxicol; 2017 Apr 25; 98(4):546-555. PubMed ID: 28132077
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhang Y, Lee HK.
    J Chromatogr A; 2013 Jan 04; 1271(1):56-61. PubMed ID: 23237715
    [Abstract] [Full Text] [Related]

  • 19. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents.
    Yu H, Merib J, Anderson JL.
    J Chromatogr A; 2016 Sep 09; 1463():11-9. PubMed ID: 27515554
    [Abstract] [Full Text] [Related]

  • 20. Assessment of dispersive liquid-liquid microextraction for the simultaneous extraction, preconcentration, and derivatization of Hg2+ and CH3Hg+ for further determination by GC-MS.
    Soares BM, Pereira ER, Maciel JV, Vieira AA, Duarte FA.
    J Sep Sci; 2013 Oct 09; 36(20):3411-8. PubMed ID: 23946243
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.