These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
457 related items for PubMed ID: 28429326
1. Wax Ester Fermentation and Its Application for Biofuel Production. Inui H, Ishikawa T, Tamoi M. Adv Exp Med Biol; 2017; 979():269-283. PubMed ID: 28429326 [Abstract] [Full Text] [Related]
2. Variability of wax ester fermentation in natural and bleached Euglena gracilis Strains in response to oxygen and the elongase inhibitor flufenacet. Tucci S, Vacula R, Krajcovic J, Proksch P, Martin W. J Eukaryot Microbiol; 2010; 57(1):63-9. PubMed ID: 20015184 [Abstract] [Full Text] [Related]
3. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production. Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T, Shigeoka S. Biotechnol Biofuels; 2015; 8():80. PubMed ID: 26056534 [Abstract] [Full Text] [Related]
4. Alteration of Wax Ester Content and Composition in Euglena gracilis with Gene Silencing of 3-ketoacyl-CoA Thiolase Isozymes. Nakazawa M, Andoh H, Koyama K, Watanabe Y, Nakai T, Ueda M, Sakamoto T, Inui H, Nakano Y, Miyatake K. Lipids; 2015 May; 50(5):483-92. PubMed ID: 25860691 [Abstract] [Full Text] [Related]
5. Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. Nakazawa M, Ando H, Nishimoto A, Ohta T, Sakamoto K, Ishikawa T, Ueda M, Sakamoto T, Nakano Y, Miyatake K, Inui H. FEBS Lett; 2018 Dec; 592(24):4020-4027. PubMed ID: 30328102 [Abstract] [Full Text] [Related]
6. Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. Tamaki S, Nishino K, Ogawa T, Maruta T, Sawa Y, Arakawa K, Ishikawa T. PLoS One; 2019 Dec; 14(12):e0227226. PubMed ID: 31891638 [Abstract] [Full Text] [Related]
7. Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Teerawanichpan P, Qiu X. Lipids; 2010 Mar; 45(3):263-73. PubMed ID: 20195781 [Abstract] [Full Text] [Related]
8. A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. Tomiyama T, Goto K, Tanaka Y, Maruta T, Ogawa T, Sawa Y, Ito T, Ishikawa T. PLoS One; 2019 Mar; 14(1):e0210755. PubMed ID: 30650145 [Abstract] [Full Text] [Related]
9. Wax Ester Synthase/Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosynthesis in Euglena gracilis. Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y, Ishikawa T. Sci Rep; 2017 Oct 18; 7(1):13504. PubMed ID: 29044218 [Abstract] [Full Text] [Related]
10. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. Hoffmeister M, Piotrowski M, Nowitzki U, Martin W. J Biol Chem; 2005 Feb 11; 280(6):4329-38. PubMed ID: 15569691 [Abstract] [Full Text] [Related]
11. Physiological functions of pyruvate:NADP+ oxidoreductase and 2-oxoglutarate decarboxylase in Euglena gracilis under aerobic and anaerobic conditions. Nakazawa M, Hayashi R, Takenaka S, Inui H, Ishikawa T, Ueda M, Sakamoto T, Nakano Y, Miyatake K. Biosci Biotechnol Biochem; 2017 Jul 11; 81(7):1386-1393. PubMed ID: 28463550 [Abstract] [Full Text] [Related]
12. The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Inui H, Miyatake K, Nakano Y, Kitaoka S. Arch Biochem Biophys; 1985 Mar 11; 237(2):423-9. PubMed ID: 3919646 [Abstract] [Full Text] [Related]
13. Visualizing wax ester fermentation in single Euglena gracilis cells by Raman microspectroscopy and multivariate curve resolution analysis. Iwasaki K, Kaneko A, Tanaka Y, Ishikawa T, Noothalapati H, Yamamoto T. Biotechnol Biofuels; 2019 Mar 11; 12():128. PubMed ID: 31139258 [Abstract] [Full Text] [Related]
14. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K. BMC Genomics; 2016 Mar 03; 17():182. PubMed ID: 26939900 [Abstract] [Full Text] [Related]
15. Fatty acid synthesis in mitochondria of Euglena gracilis. Inui H, Miyatake K, Nakano Y, Kitaoka S. Eur J Biochem; 1984 Jul 02; 142(1):121-6. PubMed ID: 6146525 [Abstract] [Full Text] [Related]
16. The Mitochondrion of Euglena gracilis. Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. Adv Exp Med Biol; 2017 Jul 02; 979():19-37. PubMed ID: 28429315 [Abstract] [Full Text] [Related]
17. Genome editing-based mutagenesis stably modifies composition of wax esters synthesized by Euglena gracilis under anaerobic conditions. Nagamine S, Oishi R, Ueda M, Sakamoto T, Nakazawa M. Bioresour Technol; 2024 Oct 02; 410():131255. PubMed ID: 39127356 [Abstract] [Full Text] [Related]
18. Understanding wax ester synthesis in Euglena gracilis: Insights into mitochondrial anaerobic respiration. Nakazawa M, Inui H. Protist; 2023 Dec 02; 174(6):125996. PubMed ID: 38041972 [Abstract] [Full Text] [Related]
19. Characterization of sulfur-compound metabolism underlying wax-ester fermentation in Euglena gracilis. Yamada K, Nitta T, Atsuji K, Shiroyama M, Inoue K, Higuchi C, Nitta N, Oshiro S, Mochida K, Iwata O, Ohtsu I, Suzuki K. Sci Rep; 2019 Jan 29; 9(1):853. PubMed ID: 30696857 [Abstract] [Full Text] [Related]
20. Improved fatty aldehyde and wax ester production by overexpression of fatty acyl-CoA reductases. Lehtinen T, Efimova E, Santala S, Santala V. Microb Cell Fact; 2018 Feb 08; 17(1):19. PubMed ID: 29422050 [Abstract] [Full Text] [Related] Page: [Next] [New Search]